389 lines
16 KiB
HLSL
389 lines
16 KiB
HLSL
|
#ifndef UNIVERSAL_STENCIL_DEFERRED
|
||
|
#define UNIVERSAL_STENCIL_DEFERRED
|
||
|
|
||
|
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl"
|
||
|
#include "Packages/com.unity.render-pipelines.universal/Shaders/Utils/Deferred.hlsl"
|
||
|
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Shadows.hlsl"
|
||
|
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/DynamicScaling.hlsl"
|
||
|
#include_with_pragmas "Packages/com.unity.render-pipelines.core/ShaderLibrary/FoveatedRenderingKeywords.hlsl"
|
||
|
|
||
|
struct Attributes
|
||
|
{
|
||
|
float4 positionOS : POSITION;
|
||
|
uint vertexID : SV_VertexID;
|
||
|
UNITY_VERTEX_INPUT_INSTANCE_ID
|
||
|
};
|
||
|
|
||
|
struct Varyings
|
||
|
{
|
||
|
float4 positionCS : SV_POSITION;
|
||
|
float3 screenUV : TEXCOORD1;
|
||
|
UNITY_VERTEX_INPUT_INSTANCE_ID
|
||
|
UNITY_VERTEX_OUTPUT_STEREO
|
||
|
};
|
||
|
|
||
|
#if defined(_SPOT)
|
||
|
float4 _SpotLightScale;
|
||
|
float4 _SpotLightBias;
|
||
|
float4 _SpotLightGuard;
|
||
|
#endif
|
||
|
|
||
|
Varyings Vertex(Attributes input)
|
||
|
{
|
||
|
Varyings output = (Varyings)0;
|
||
|
|
||
|
UNITY_SETUP_INSTANCE_ID(input);
|
||
|
UNITY_TRANSFER_INSTANCE_ID(input, output);
|
||
|
UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(output);
|
||
|
|
||
|
float3 positionOS = input.positionOS.xyz;
|
||
|
|
||
|
#if defined(_SPOT)
|
||
|
// Spot lights have an outer angle than can be up to 180 degrees, in which case the shape
|
||
|
// becomes a capped hemisphere. There is no affine transforms to handle the particular cone shape,
|
||
|
// so instead we will adjust the vertices positions in the vertex shader to get the tighest fit.
|
||
|
[flatten] if (any(positionOS.xyz))
|
||
|
{
|
||
|
// The hemisphere becomes the rounded cap of the cone.
|
||
|
positionOS.xyz = _SpotLightBias.xyz + _SpotLightScale.xyz * positionOS.xyz;
|
||
|
positionOS.xyz = normalize(positionOS.xyz) * _SpotLightScale.w;
|
||
|
// Slightly inflate the geometry to fit the analytic cone shape.
|
||
|
// We want the outer rim to be expanded along xy axis only, while the rounded cap is extended along all axis.
|
||
|
positionOS.xyz = (positionOS.xyz - float3(0, 0, _SpotLightGuard.w)) * _SpotLightGuard.xyz + float3(0, 0, _SpotLightGuard.w);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if defined(_DIRECTIONAL) || defined(_FOG) || defined(_CLEAR_STENCIL_PARTIAL) || (defined(_SSAO_ONLY) && defined(_SCREEN_SPACE_OCCLUSION))
|
||
|
// Full screen render using a large triangle.
|
||
|
output.positionCS = float4(positionOS.xy, UNITY_RAW_FAR_CLIP_VALUE, 1.0); // Force triangle to be on zfar
|
||
|
#elif defined(_SSAO_ONLY) && !defined(_SCREEN_SPACE_OCCLUSION)
|
||
|
// Deferred renderer does not know whether there is a SSAO feature or not at the C# scripting level.
|
||
|
// However, this is known at the shader level because of the shader keyword SSAO feature enables.
|
||
|
// If the keyword was not enabled, discard the SSAO_only pass by rendering the geometry outside the screen.
|
||
|
output.positionCS = float4(positionOS.xy, -2, 1.0); // Force triangle to be discarded
|
||
|
#else
|
||
|
// Light shape geometry is projected as normal.
|
||
|
VertexPositionInputs vertexInput = GetVertexPositionInputs(positionOS.xyz);
|
||
|
output.positionCS = vertexInput.positionCS;
|
||
|
#endif
|
||
|
|
||
|
output.screenUV = output.positionCS.xyw;
|
||
|
#if UNITY_UV_STARTS_AT_TOP
|
||
|
output.screenUV.xy = output.screenUV.xy * float2(0.5, -0.5) + 0.5 * output.screenUV.z;
|
||
|
#else
|
||
|
output.screenUV.xy = output.screenUV.xy * 0.5 + 0.5 * output.screenUV.z;
|
||
|
#endif
|
||
|
|
||
|
output.screenUV.xy = DynamicScalingApplyScaleBias(output.screenUV.xy, float4(_RTHandleScale.xy, 0.0f, 0.0f));
|
||
|
|
||
|
return output;
|
||
|
}
|
||
|
|
||
|
TEXTURE2D_X(_CameraDepthTexture);
|
||
|
TEXTURE2D_X_HALF(_GBuffer0);
|
||
|
TEXTURE2D_X_HALF(_GBuffer1);
|
||
|
TEXTURE2D_X_HALF(_GBuffer2);
|
||
|
|
||
|
|
||
|
#if _RENDER_PASS_ENABLED
|
||
|
#define GBUFFER0 0
|
||
|
#define GBUFFER1 1
|
||
|
#define GBUFFER2 2
|
||
|
#define GBUFFER3 3
|
||
|
|
||
|
FRAMEBUFFER_INPUT_X_HALF(GBUFFER0);
|
||
|
FRAMEBUFFER_INPUT_X_HALF(GBUFFER1);
|
||
|
FRAMEBUFFER_INPUT_X_HALF(GBUFFER2);
|
||
|
FRAMEBUFFER_INPUT_X_FLOAT(GBUFFER3);
|
||
|
|
||
|
#if OUTPUT_SHADOWMASK && (defined(_WRITE_RENDERING_LAYERS) || defined(_LIGHT_LAYERS))
|
||
|
#define GBUFFER4 4
|
||
|
#define GBUFFER5 5
|
||
|
TEXTURE2D_X_HALF(_GBuffer4);
|
||
|
TEXTURE2D_X_HALF(_GBuffer5);
|
||
|
FRAMEBUFFER_INPUT_X_HALF(GBUFFER4);
|
||
|
FRAMEBUFFER_INPUT_X_HALF(GBUFFER5);
|
||
|
#elif OUTPUT_SHADOWMASK || defined(_WRITE_RENDERING_LAYERS) || defined(_LIGHT_LAYERS)
|
||
|
#define GBUFFER4 4
|
||
|
TEXTURE2D_X_HALF(_GBuffer4);
|
||
|
FRAMEBUFFER_INPUT_X_HALF(GBUFFER4);
|
||
|
#endif
|
||
|
|
||
|
#else
|
||
|
#ifdef GBUFFER_OPTIONAL_SLOT_1
|
||
|
TEXTURE2D_X_HALF(_GBuffer4);
|
||
|
#endif
|
||
|
|
||
|
#ifdef GBUFFER_OPTIONAL_SLOT_2
|
||
|
TEXTURE2D_X(_GBuffer5);
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#ifdef GBUFFER_OPTIONAL_SLOT_3
|
||
|
TEXTURE2D_X(_GBuffer6);
|
||
|
#endif
|
||
|
|
||
|
float4x4 _ScreenToWorld[2];
|
||
|
// 2023.3 Deprecated. This is for backwards compatibility. Remove in the future.
|
||
|
#define my_point_clamp_sampler sampler_PointClamp
|
||
|
|
||
|
float3 _LightPosWS;
|
||
|
half3 _LightColor;
|
||
|
half4 _LightAttenuation; // .xy are used by DistanceAttenuation - .zw are used by AngleAttenuation *for SpotLights)
|
||
|
half3 _LightDirection; // directional/spotLights support
|
||
|
half4 _LightOcclusionProbInfo;
|
||
|
int _LightFlags;
|
||
|
int _ShadowLightIndex;
|
||
|
uint _LightLayerMask;
|
||
|
int _CookieLightIndex;
|
||
|
|
||
|
half4 FragWhite(Varyings input) : SV_Target
|
||
|
{
|
||
|
return half4(1.0, 1.0, 1.0, 1.0);
|
||
|
}
|
||
|
|
||
|
half4 SampleAdditionalLightCookieDeferred(int perObjectLightIndex, float3 samplePositionWS)
|
||
|
{
|
||
|
float4 cookieUvRect = GetLightCookieAtlasUVRect(perObjectLightIndex);
|
||
|
float4x4 worldToLight = GetLightCookieWorldToLightMatrix(perObjectLightIndex);
|
||
|
float2 cookieUv = float2(0,0);
|
||
|
|
||
|
#if defined(_SPOT)
|
||
|
cookieUv = ComputeLightCookieUVSpot(worldToLight, samplePositionWS, cookieUvRect);
|
||
|
#endif
|
||
|
#if defined(_POINT)
|
||
|
cookieUv = ComputeLightCookieUVPoint(worldToLight, samplePositionWS, cookieUvRect);
|
||
|
#endif
|
||
|
#if defined(_DIRECTIONAL)
|
||
|
cookieUv = ComputeLightCookieUVDirectional(worldToLight, samplePositionWS, cookieUvRect, URP_TEXTURE_WRAP_MODE_REPEAT);
|
||
|
#endif
|
||
|
half4 cookieColor = SampleAdditionalLightsCookieAtlasTexture(cookieUv);
|
||
|
cookieColor = half4(IsAdditionalLightsCookieAtlasTextureRGBFormat() ? cookieColor.rgb
|
||
|
: IsAdditionalLightsCookieAtlasTextureAlphaFormat() ? cookieColor.aaa
|
||
|
: cookieColor.rrr, 1);
|
||
|
return cookieColor;
|
||
|
|
||
|
}
|
||
|
|
||
|
Light GetStencilLight(float3 posWS, float2 screen_uv, half4 shadowMask, uint materialFlags)
|
||
|
{
|
||
|
Light unityLight;
|
||
|
|
||
|
bool materialReceiveShadowsOff = (materialFlags & kMaterialFlagReceiveShadowsOff) != 0;
|
||
|
|
||
|
uint lightLayerMask =_LightLayerMask;
|
||
|
|
||
|
#if defined(_DIRECTIONAL)
|
||
|
#if defined(_DEFERRED_MAIN_LIGHT)
|
||
|
unityLight = GetMainLight();
|
||
|
// unity_LightData.z is set per mesh for forward renderer, we cannot cull lights in this fashion with deferred renderer.
|
||
|
unityLight.distanceAttenuation = 1.0;
|
||
|
|
||
|
if (!materialReceiveShadowsOff)
|
||
|
{
|
||
|
#if defined(_MAIN_LIGHT_SHADOWS_SCREEN) && !defined(_SURFACE_TYPE_TRANSPARENT)
|
||
|
float4 shadowCoord = float4(screen_uv, 0.0, 1.0);
|
||
|
#elif defined(MAIN_LIGHT_CALCULATE_SHADOWS)
|
||
|
float4 shadowCoord = TransformWorldToShadowCoord(posWS.xyz);
|
||
|
#else
|
||
|
float4 shadowCoord = float4(0, 0, 0, 0);
|
||
|
#endif
|
||
|
unityLight.shadowAttenuation = MainLightShadow(shadowCoord, posWS.xyz, shadowMask, _MainLightOcclusionProbes);
|
||
|
}
|
||
|
|
||
|
#if defined(_LIGHT_COOKIES)
|
||
|
real3 cookieColor = SampleMainLightCookie(posWS);
|
||
|
unityLight.color *= half3(cookieColor);
|
||
|
#endif
|
||
|
#else
|
||
|
unityLight.direction = _LightDirection;
|
||
|
unityLight.distanceAttenuation = 1.0;
|
||
|
unityLight.shadowAttenuation = 1.0;
|
||
|
unityLight.color = _LightColor.rgb;
|
||
|
unityLight.layerMask = lightLayerMask;
|
||
|
|
||
|
if (!materialReceiveShadowsOff)
|
||
|
{
|
||
|
#if defined(_ADDITIONAL_LIGHT_SHADOWS)
|
||
|
unityLight.shadowAttenuation = AdditionalLightShadow(_ShadowLightIndex, posWS.xyz, _LightDirection, shadowMask, _LightOcclusionProbInfo);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#ifdef _LIGHT_COOKIES
|
||
|
// Enable/disable is done toggling the keyword _LIGHT_COOKIES, but we could do a "static if" instead if required.
|
||
|
// if(_CookieLightIndex >= 0)
|
||
|
{
|
||
|
half3 cookieColor = SampleAdditionalLightCookieDeferred(_CookieLightIndex, posWS).xyz;
|
||
|
unityLight.color *= cookieColor;
|
||
|
}
|
||
|
#endif
|
||
|
#endif
|
||
|
#else
|
||
|
PunctualLightData light;
|
||
|
light.posWS = _LightPosWS;
|
||
|
light.radius2 = 0.0; // only used by tile-lights.
|
||
|
light.color = float4(_LightColor, 0.0);
|
||
|
light.attenuation = _LightAttenuation;
|
||
|
light.spotDirection = _LightDirection;
|
||
|
light.occlusionProbeInfo = _LightOcclusionProbInfo;
|
||
|
light.flags = _LightFlags;
|
||
|
light.layerMask = lightLayerMask;
|
||
|
unityLight = UnityLightFromPunctualLightDataAndWorldSpacePosition(light, posWS.xyz, shadowMask, _ShadowLightIndex, materialReceiveShadowsOff);
|
||
|
|
||
|
#ifdef _LIGHT_COOKIES
|
||
|
// Enable/disable is done toggling the keyword _LIGHT_COOKIES, but we could do a "static if" instead if required.
|
||
|
// if(_CookieLightIndex >= 0)
|
||
|
{
|
||
|
half3 cookieColor = SampleAdditionalLightCookieDeferred(_CookieLightIndex, posWS).xyz;
|
||
|
unityLight.color *= cookieColor;
|
||
|
}
|
||
|
#endif
|
||
|
#endif
|
||
|
return unityLight;
|
||
|
}
|
||
|
|
||
|
half4 DeferredShading(Varyings input) : SV_Target
|
||
|
{
|
||
|
UNITY_SETUP_INSTANCE_ID(input);
|
||
|
UNITY_SETUP_STEREO_EYE_INDEX_POST_VERTEX(input);
|
||
|
|
||
|
float2 screen_uv = (input.screenUV.xy / input.screenUV.z);
|
||
|
|
||
|
#if defined(SUPPORTS_FOVEATED_RENDERING_NON_UNIFORM_RASTER)
|
||
|
float2 undistorted_screen_uv = screen_uv;
|
||
|
UNITY_BRANCH if (_FOVEATED_RENDERING_NON_UNIFORM_RASTER)
|
||
|
{
|
||
|
screen_uv = input.positionCS.xy * _ScreenSize.zw;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
half4 shadowMask = 1.0;
|
||
|
|
||
|
#if _RENDER_PASS_ENABLED
|
||
|
float d = LOAD_FRAMEBUFFER_X_INPUT(GBUFFER3, input.positionCS.xy).x;
|
||
|
half4 gbuffer0 = LOAD_FRAMEBUFFER_X_INPUT(GBUFFER0, input.positionCS.xy);
|
||
|
half4 gbuffer1 = LOAD_FRAMEBUFFER_X_INPUT(GBUFFER1, input.positionCS.xy);
|
||
|
half4 gbuffer2 = LOAD_FRAMEBUFFER_X_INPUT(GBUFFER2, input.positionCS.xy);
|
||
|
#if defined(_DEFERRED_MIXED_LIGHTING)
|
||
|
shadowMask = LOAD_FRAMEBUFFER_X_INPUT(GBUFFER4, input.positionCS.xy);
|
||
|
#endif
|
||
|
#else
|
||
|
// Using SAMPLE_TEXTURE2D is faster than using LOAD_TEXTURE2D on iOS platforms (5% faster shader).
|
||
|
// Possible reason: HLSLcc upcasts Load() operation to float, which doesn't happen for Sample()?
|
||
|
float d = SAMPLE_TEXTURE2D_X_LOD(_CameraDepthTexture, sampler_PointClamp, screen_uv, 0).x; // raw depth value has UNITY_REVERSED_Z applied on most platforms.
|
||
|
half4 gbuffer0 = SAMPLE_TEXTURE2D_X_LOD(_GBuffer0, sampler_PointClamp, screen_uv, 0);
|
||
|
half4 gbuffer1 = SAMPLE_TEXTURE2D_X_LOD(_GBuffer1, sampler_PointClamp, screen_uv, 0);
|
||
|
half4 gbuffer2 = SAMPLE_TEXTURE2D_X_LOD(_GBuffer2, sampler_PointClamp, screen_uv, 0);
|
||
|
#if defined(_DEFERRED_MIXED_LIGHTING)
|
||
|
shadowMask = SAMPLE_TEXTURE2D_X_LOD(MERGE_NAME(_, GBUFFER_SHADOWMASK), sampler_PointClamp, screen_uv, 0);
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
half surfaceDataOcclusion = gbuffer1.a;
|
||
|
uint materialFlags = UnpackMaterialFlags(gbuffer0.a);
|
||
|
|
||
|
half3 color = 0.0.xxx;
|
||
|
half alpha = 1.0;
|
||
|
|
||
|
#if defined(_DEFERRED_MIXED_LIGHTING)
|
||
|
// If both lights and geometry are static, then no realtime lighting to perform for this combination.
|
||
|
[branch] if ((_LightFlags & materialFlags) == kMaterialFlagSubtractiveMixedLighting)
|
||
|
return half4(color, alpha); // Cannot discard because stencil must be updated.
|
||
|
#endif
|
||
|
|
||
|
#if defined(SUPPORTS_FOVEATED_RENDERING_NON_UNIFORM_RASTER)
|
||
|
UNITY_BRANCH if (_FOVEATED_RENDERING_NON_UNIFORM_RASTER)
|
||
|
{
|
||
|
input.positionCS.xy = undistorted_screen_uv * _ScreenSize.xy;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if defined(USING_STEREO_MATRICES)
|
||
|
int eyeIndex = unity_StereoEyeIndex;
|
||
|
#else
|
||
|
int eyeIndex = 0;
|
||
|
#endif
|
||
|
float4 posWS = mul(_ScreenToWorld[eyeIndex], float4(input.positionCS.xy, d, 1.0));
|
||
|
posWS.xyz *= rcp(posWS.w);
|
||
|
|
||
|
Light unityLight = GetStencilLight(posWS.xyz, screen_uv, shadowMask, materialFlags);
|
||
|
|
||
|
#ifdef _LIGHT_LAYERS
|
||
|
#if _RENDER_PASS_ENABLED
|
||
|
float renderingLayers = LOAD_FRAMEBUFFER_X_INPUT(GBUFFER4, input.positionCS.xy).x;
|
||
|
#else
|
||
|
float4 renderingLayers = SAMPLE_TEXTURE2D_X_LOD(MERGE_NAME(_, GBUFFER_LIGHT_LAYERS), sampler_PointClamp, screen_uv, 0);
|
||
|
#endif
|
||
|
uint meshRenderingLayers = DecodeMeshRenderingLayer(renderingLayers);
|
||
|
[branch] if (!IsMatchingLightLayer(unityLight.layerMask, meshRenderingLayers))
|
||
|
return half4(color, alpha); // Cannot discard because stencil must be updated.
|
||
|
#endif
|
||
|
|
||
|
#if defined(_SCREEN_SPACE_OCCLUSION) && !defined(_SURFACE_TYPE_TRANSPARENT)
|
||
|
AmbientOcclusionFactor aoFactor = GetScreenSpaceAmbientOcclusion(screen_uv);
|
||
|
unityLight.color *= aoFactor.directAmbientOcclusion;
|
||
|
#if defined(_DIRECTIONAL) && defined(_DEFERRED_FIRST_LIGHT)
|
||
|
// What we want is really to apply the mininum occlusion value between the baked occlusion from surfaceDataOcclusion and real-time occlusion from SSAO.
|
||
|
// But we already applied the baked occlusion during gbuffer pass, so we have to cancel it out here.
|
||
|
// We must also avoid divide-by-0 that the reciprocal can generate.
|
||
|
half occlusion = aoFactor.indirectAmbientOcclusion < surfaceDataOcclusion ? aoFactor.indirectAmbientOcclusion * rcp(surfaceDataOcclusion) : 1.0;
|
||
|
alpha = occlusion;
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
InputData inputData = InputDataFromGbufferAndWorldPosition(gbuffer2, posWS.xyz);
|
||
|
|
||
|
#if defined(_LIT)
|
||
|
#if SHADER_API_MOBILE || SHADER_API_SWITCH
|
||
|
// Specular highlights are still silenced by setting specular to 0.0 during gbuffer pass and GPU timing is still reduced.
|
||
|
bool materialSpecularHighlightsOff = false;
|
||
|
#else
|
||
|
bool materialSpecularHighlightsOff = (materialFlags & kMaterialFlagSpecularHighlightsOff);
|
||
|
#endif
|
||
|
BRDFData brdfData = BRDFDataFromGbuffer(gbuffer0, gbuffer1, gbuffer2);
|
||
|
color = LightingPhysicallyBased(brdfData, unityLight, inputData.normalWS, inputData.viewDirectionWS, materialSpecularHighlightsOff);
|
||
|
#elif defined(_SIMPLELIT)
|
||
|
SurfaceData surfaceData = SurfaceDataFromGbuffer(gbuffer0, gbuffer1, gbuffer2, kLightingSimpleLit);
|
||
|
half3 attenuatedLightColor = unityLight.color * (unityLight.distanceAttenuation * unityLight.shadowAttenuation);
|
||
|
half3 diffuseColor = LightingLambert(attenuatedLightColor, unityLight.direction, inputData.normalWS);
|
||
|
half smoothness = exp2(10 * surfaceData.smoothness + 1);
|
||
|
half3 specularColor = LightingSpecular(attenuatedLightColor, unityLight.direction, inputData.normalWS, inputData.viewDirectionWS, half4(surfaceData.specular, 1), smoothness);
|
||
|
|
||
|
// TODO: if !defined(_SPECGLOSSMAP) && !defined(_SPECULAR_COLOR), force specularColor to 0 in gbuffer code
|
||
|
color = diffuseColor * surfaceData.albedo + specularColor;
|
||
|
#endif
|
||
|
|
||
|
return half4(color, alpha);
|
||
|
}
|
||
|
|
||
|
half4 FragFog(Varyings input) : SV_Target
|
||
|
{
|
||
|
UNITY_SETUP_STEREO_EYE_INDEX_POST_VERTEX(input);
|
||
|
|
||
|
#if _RENDER_PASS_ENABLED
|
||
|
float d = LOAD_FRAMEBUFFER_X_INPUT(GBUFFER3, input.positionCS.xy).x;
|
||
|
#else
|
||
|
float d = LOAD_TEXTURE2D_X(_CameraDepthTexture, input.positionCS.xy).x;
|
||
|
#endif
|
||
|
float eye_z = LinearEyeDepth(d, _ZBufferParams);
|
||
|
float clip_z = UNITY_MATRIX_P[2][2] * -eye_z + UNITY_MATRIX_P[2][3];
|
||
|
half fogFactor = ComputeFogFactor(clip_z);
|
||
|
half fogIntensity = ComputeFogIntensity(fogFactor);
|
||
|
return half4(unity_FogColor.rgb, fogIntensity);
|
||
|
}
|
||
|
|
||
|
half4 FragSSAOOnly(Varyings input) : SV_Target
|
||
|
{
|
||
|
UNITY_SETUP_STEREO_EYE_INDEX_POST_VERTEX(input);
|
||
|
|
||
|
float2 screen_uv = (input.screenUV.xy / input.screenUV.z);
|
||
|
AmbientOcclusionFactor aoFactor = GetScreenSpaceAmbientOcclusion(screen_uv);
|
||
|
half surfaceDataOcclusion = SAMPLE_TEXTURE2D_X_LOD(_GBuffer1, sampler_PointClamp, screen_uv, 0).a;
|
||
|
// What we want is really to apply the mininum occlusion value between the baked occlusion from surfaceDataOcclusion and real-time occlusion from SSAO.
|
||
|
// But we already applied the baked occlusion during gbuffer pass, so we have to cancel it out here.
|
||
|
// We must also avoid divide-by-0 that the reciprocal can generate.
|
||
|
half occlusion = aoFactor.indirectAmbientOcclusion < surfaceDataOcclusion ? aoFactor.indirectAmbientOcclusion * rcp(surfaceDataOcclusion) : 1.0;
|
||
|
return half4(0.0, 0.0, 0.0, occlusion);
|
||
|
}
|
||
|
#endif //UNIVERSAL_STENCIL_DEFERRED
|