UnityGame/Library/PackageCache/com.unity.rendering.light-transport/Runtime/UnifiedRayTracing/Compute/RadeonRays/BvhCheck.cs

313 lines
11 KiB
C#
Raw Normal View History

2024-10-27 10:53:47 +03:00
using System;
using System.Collections.Generic;
using System.Runtime.InteropServices;
using Unity.Mathematics;
using UnityEngine.Assertions;
namespace UnityEngine.Rendering.RadeonRays
{
internal class AABB
{
public float3 Min;
public float3 Max;
public AABB()
{
Min = new float3(float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity);
Max = new float3(float.NegativeInfinity, float.NegativeInfinity, float.NegativeInfinity);
}
public AABB(float3 min, float3 max)
{
Min = min;
Max = max;
}
public void Encapsulate(AABB aabb)
{
Min = math.min(Min, aabb.Min);
Max = math.max(Max, aabb.Max);
}
public void Encapsulate(float3 point)
{
Min = math.min(Min, point);
Max = math.max(Max, point);
}
public bool Contains(AABB rhs)
{
return rhs.Min.x >= Min.x && rhs.Min.y >= Min.y && rhs.Min.z >= Min.z &&
rhs.Max.x <= Max.x && rhs.Max.y <= Max.y && rhs.Max.z <= Max.z;
}
public bool IsValid()
{
return Min.x <= Max.x && Min.y <= Max.y && Min.z <= Max.z;
}
}
internal class BvhCheck
{
const uint kInvalidID = ~0u;
public class VertexBuffers
{
public GraphicsBuffer vertices;
public GraphicsBuffer indices;
public uint vertexBufferOffset = 0;
public uint vertexCount;
public uint vertexStride = 3;
public uint indexBufferOffset = 0;
public IndexFormat indexFormat = IndexFormat.Int32;
public uint indexCount;
};
public static VertexBuffers Convert(MeshBuildInfo info)
{
var res = new VertexBuffers()
{
vertices = info.vertices,
indices = info.triangleIndices,
vertexBufferOffset = (uint)info.verticesStartOffset,
vertexCount = info.vertexCount,
vertexStride = info.vertexStride,
indexBufferOffset = (uint)info.indicesStartOffset,
indexCount = info.triangleCount * 3,
indexFormat = info.indexFormat
};
return res;
}
public static double SurfaceArea(AABB aabb)
{
float3 edges = aabb.Max - aabb.Min;
return 2.0f * (edges.x * edges.y + edges.x * edges.z + edges.z * edges.y);
}
public static double NodeSahCost(uint nodeAddr, AABB nodeAabb, AABB parentAabb)
{
double cost = IsLeafNode(nodeAddr) ? GetLeafNodePrimCount(nodeAddr) : 1.2f;
var a = SurfaceArea(nodeAabb);
var b = SurfaceArea(parentAabb);
return cost * a/ b;
}
public static double CheckConsistency(VertexBuffers bvhVertexBuffers, BottomLevelLevelAccelStruct bvh, uint primitiveCount)
{
return CheckConsistency(bvhVertexBuffers, bvh.bvh, bvh.bvhOffset, bvh.bvhLeaves, bvh.bvhLeavesOffset, primitiveCount);
}
public static double CheckConsistency(GraphicsBuffer bvhBuffer, uint bvhBufferOffset, uint primitiveCount)
{
return CheckConsistency(null, bvhBuffer, bvhBufferOffset, null, 0, primitiveCount);
}
static double CheckConsistency(
VertexBuffers bvhVertexBuffers,
GraphicsBuffer bvhBuffer, uint bvhBufferOffset, GraphicsBuffer bvhLeavesBuffer, uint bvhLeavesBufferOffset,
uint primitiveCount)
{
var header = new BvhHeader[1];
bvhBuffer.GetData(header, 0, (int)bvhBufferOffset, 1);
return CheckConsistency(bvhVertexBuffers, bvhBuffer, bvhBufferOffset + 1, bvhLeavesBuffer, bvhLeavesBufferOffset, header[0], primitiveCount);
}
public static int ExtractBits(uint value, int startBit, int count)
{
uint mask = (uint)(((1 << count) - 1) << startBit);
return ((int)(mask & value)) >> startBit;
}
public static bool IsLeafNode(uint nodeAddr)
{
return (nodeAddr & (1 << 31)) != 0;
}
public static uint GetLeafNodeFirstPrim(uint nodeAddr)
{
return (nodeAddr & ~0xE0000000);
}
public static uint GetLeafNodePrimCount(uint nodeAddr)
{
return (uint)ExtractBits(nodeAddr, 29, 2) + 1;
}
static double CheckConsistency(
VertexBuffers bvhVertexBuffers,
GraphicsBuffer bvhBuffer, uint bvhBufferOffset, GraphicsBuffer bvhLeavesBuffer, uint bvhLeavesBufferOffset,
BvhHeader header, uint primitiveCount)
{
uint leafCount = header.leafNodeCount;
uint rootAddr = header.root;
var nodeCount = HlbvhBuilder.GetBvhNodeCount(leafCount);
bool isTopLevel = bvhVertexBuffers == null;
var bvhNodes = new BvhNode[nodeCount];
bvhBuffer.GetData(bvhNodes, 0, (int)bvhBufferOffset, (int)nodeCount);
VertexBuffersCPU vertexBuffers = null;
uint4[] bvhLeafNodes = null;
if (!isTopLevel)
{
vertexBuffers = DownloadVertexData(bvhVertexBuffers);
bvhLeafNodes = new uint4[primitiveCount];
bvhLeavesBuffer.GetData(bvhLeafNodes, 0, (int)bvhLeavesBufferOffset, (int)primitiveCount);
}
uint countedPrimitives = 0;
var rootAabb = GetAabb(vertexBuffers, bvhNodes, bvhLeafNodes, rootAddr, isTopLevel);
double sahCost = 0.0f;
var q = new Queue<(uint Addr, uint Parent)>();
q.Enqueue((Addr: rootAddr, Parent: kInvalidID));
while (q.Count != 0)
{
var current = q.Dequeue();
uint addr = current.Addr;
uint parent = current.Parent;
AABB aabb = GetAabb(vertexBuffers, bvhNodes, bvhLeafNodes, addr, isTopLevel);
sahCost += NodeSahCost(addr, aabb, rootAabb);
if (!(isTopLevel && IsLeafNode(addr)))
Assert.IsTrue(aabb.IsValid());
if (IsLeafNode(addr))
{
countedPrimitives += isTopLevel ? 1 : GetLeafNodePrimCount(addr);
}
else // internal node
{
var node = bvhNodes[addr];
Assert.AreEqual(parent, node.parent);
var leftAabb = GetAabb(vertexBuffers, bvhNodes, bvhLeafNodes, node.child0, isTopLevel);
var rightAabb = GetAabb(vertexBuffers, bvhNodes, bvhLeafNodes, node.child1, isTopLevel);
bool leftOk = (aabb.Contains(leftAabb));
bool rightOk = (aabb.Contains(rightAabb));
Assert.IsTrue(leftOk);
Assert.IsTrue(rightOk);
q.Enqueue((Addr: node.child0, Parent: addr));
q.Enqueue((Addr: node.child1, Parent: addr));
}
}
Assert.AreEqual(countedPrimitives, primitiveCount);
return sahCost;
}
private sealed class VertexBuffersCPU
{
public float[] vertices;
public uint[] indices;
public uint vertexStride;
};
static uint3 GetFaceIndices(uint[] indices, uint triangleIdx)
{
return new uint3(
indices[3 * triangleIdx],
indices[3 * triangleIdx + 1],
indices[3 * triangleIdx + 2]);
}
static float3 GetVertex(float[] vertices, uint stride, uint idx)
{
uint indexInFloats = idx * stride;
return new float3(
vertices[indexInFloats],
vertices[indexInFloats + 1],
vertices[indexInFloats + 2]);
}
struct Triangle
{
public float3 v0;
public float3 v1;
public float3 v2;
};
static Triangle GetTriangle(float[] vertices, uint stride, uint3 idx)
{
Triangle tri;
tri.v0 = GetVertex(vertices, stride, idx.x);
tri.v1 = GetVertex(vertices, stride, idx.y);
tri.v2 = GetVertex(vertices, stride, idx.z);
return tri;
}
static VertexBuffersCPU DownloadVertexData(VertexBuffers vertexBuffers)
{
var result = new VertexBuffersCPU();
result.vertices = new float[vertexBuffers.vertexCount * vertexBuffers.vertexStride];
result.indices = new uint[vertexBuffers.indexCount];
result.vertexStride = vertexBuffers.vertexStride;
if (vertexBuffers.indexFormat == IndexFormat.Int32)
{
vertexBuffers.indices.GetData(result.indices, 0, (int)vertexBuffers.indexBufferOffset, (int)vertexBuffers.indexCount);
}
else
{
var tmp = new ushort[vertexBuffers.indexCount];
vertexBuffers.indices.GetData(tmp, 0, (int)vertexBuffers.indexBufferOffset, (int)vertexBuffers.indexCount);
for (int i = 0; i < vertexBuffers.indexCount; ++i)
result.indices[i] = tmp[i];
}
vertexBuffers.vertices.GetData(result.vertices, 0, (int)vertexBuffers.vertexBufferOffset, (int)(vertexBuffers.vertexCount * vertexBuffers.vertexStride));
return result;
}
static AABB GetAabb(VertexBuffersCPU bvhVertexBuffers, BvhNode[] bvhNodes, uint4[] bvhLeafNodes, uint nodeAddr, bool isTopLevel)
{
var aabb = new AABB();
if (!IsLeafNode(nodeAddr))
{
var node = bvhNodes[nodeAddr];
AABB left = new AABB(node.aabb0_min, node.aabb0_max);
aabb.Encapsulate(left);
AABB right = new AABB(node.aabb1_min, node.aabb1_max);
aabb.Encapsulate(right);
}
else if (!isTopLevel)
{
int firstIndex = (int)GetLeafNodeFirstPrim(nodeAddr);
int triangleCount = (int)GetLeafNodePrimCount(nodeAddr);
for (int i = 0; i < triangleCount; ++i)
{
uint index = (uint)(i + firstIndex);
uint3 triangleIndices = bvhLeafNodes[index].xyz;
uint3 meshTriangleindices = GetFaceIndices(bvhVertexBuffers.indices, bvhLeafNodes[index].w);
Assert.AreEqual(meshTriangleindices, triangleIndices);
var triangle = GetTriangle(bvhVertexBuffers.vertices, bvhVertexBuffers.vertexStride, triangleIndices);
aabb.Encapsulate(triangle.v0);
aabb.Encapsulate(triangle.v1);
aabb.Encapsulate(triangle.v2);
}
}
return aabb;
}
}
}