420 lines
17 KiB
C#
420 lines
17 KiB
C#
using System.Collections.Generic;
|
|
using System.Collections.Specialized;
|
|
using Unity.Collections;
|
|
using UnityEngine;
|
|
using UnityEngine.U2D;
|
|
using System;
|
|
|
|
namespace UnityEngine.Rendering.Universal
|
|
{
|
|
[Serializable]
|
|
internal class ShadowMesh2D : ShadowShape2D
|
|
{
|
|
internal const int k_CapsuleCapSegments = 8;
|
|
internal const float k_TrimEdgeUninitialized = -1;
|
|
|
|
public enum EdgeProcessing
|
|
{
|
|
None,
|
|
Clipping,
|
|
}
|
|
|
|
[SerializeField] Mesh m_Mesh;
|
|
[SerializeField] Bounds m_LocalBounds;
|
|
[SerializeField] EdgeProcessing m_EdgeProcessing = EdgeProcessing.Clipping;
|
|
[SerializeField] float m_TrimEdge = k_TrimEdgeUninitialized;
|
|
[SerializeField] bool m_FlipX;
|
|
[SerializeField] bool m_FlipY;
|
|
[SerializeField] float m_InitialTrim = 0;
|
|
|
|
public Mesh mesh { get => m_Mesh; }
|
|
public BoundingSphere boundingSphere { get => m_BoundingSphere; }
|
|
internal BoundingSphere m_BoundingSphere; // update to world space
|
|
public EdgeProcessing edgeProcessing { get { return m_EdgeProcessing; } set { m_EdgeProcessing = value; } }
|
|
public float trimEdge { get { return m_TrimEdge; } set { m_TrimEdge = value; } }
|
|
|
|
static internal void DuplicateShadowMesh(Mesh source, out Mesh dest)
|
|
{
|
|
// This is not gc tested as this generates garbage
|
|
dest = new Mesh();
|
|
dest.Clear();
|
|
|
|
if (source != null)
|
|
{
|
|
dest.vertices = source.vertices;
|
|
dest.tangents = source.tangents;
|
|
dest.triangles = source.triangles;
|
|
dest.bounds = source.bounds;
|
|
}
|
|
}
|
|
|
|
internal void CopyFrom(ShadowMesh2D source)
|
|
{
|
|
// This is not gc tested as this generates garbage (calls DuplicateShadowMesh)
|
|
DuplicateShadowMesh(source.m_Mesh, out m_Mesh);
|
|
m_TrimEdge = source.trimEdge;
|
|
m_LocalBounds = source.m_LocalBounds;
|
|
m_EdgeProcessing = source.edgeProcessing;
|
|
}
|
|
|
|
internal void AddCircle(Vector3 center, float r, NativeArray<Vector3> generatedVertices, NativeArray<int> generatedIndices, bool reverseWindingOrder, ref int vertexWritePos, ref int indexWritePos)
|
|
{
|
|
float direction = reverseWindingOrder ? 1 : -1;
|
|
|
|
// Special case a full circle
|
|
float segments = 2 * k_CapsuleCapSegments;
|
|
float angle;
|
|
int startWritePos = vertexWritePos;
|
|
for (int i = 0; i < segments; i++)
|
|
{
|
|
angle = direction * (2 * Mathf.PI * (float)i / (float)segments);
|
|
float x = r * Mathf.Cos(angle) + center.x;
|
|
float y = r * Mathf.Sin(angle) + center.y;
|
|
generatedIndices[indexWritePos++] = vertexWritePos;
|
|
generatedIndices[indexWritePos++] = i + 1 < segments ? vertexWritePos + 1 : startWritePos;
|
|
generatedVertices[vertexWritePos++] = new Vector3(x, y, 0);
|
|
}
|
|
}
|
|
|
|
internal void AddCapsuleCap(Vector3 center, float r, Vector3 otherCenter, NativeArray<Vector3> generatedVertices, NativeArray<int> generatedIndices, bool reverseWindingOrder, ref int vertexWritePos, ref int indexWritePos)
|
|
{
|
|
float startAngle;
|
|
float endAngle;
|
|
|
|
// Special case a full circle
|
|
float segments = k_CapsuleCapSegments;
|
|
Vector3 otherCenterDir = (otherCenter - center).normalized;
|
|
float absCenterAngle = Mathf.Acos(Vector3.Dot(otherCenterDir, new Vector3(1, 0, 0)));
|
|
float angleSign = Vector3.Dot(otherCenterDir, new Vector3(0, 1, 0)) < 0 ? -1f : 1f;
|
|
float centerAngle = absCenterAngle * angleSign;
|
|
|
|
// This is hard coded for a half circle
|
|
if (reverseWindingOrder)
|
|
{
|
|
float HalfPI = 0.5f * Mathf.PI;
|
|
startAngle = centerAngle + HalfPI;
|
|
endAngle = startAngle + Mathf.PI;
|
|
}
|
|
else
|
|
{
|
|
float ThreeHalfsPI = 1.5f * Mathf.PI;
|
|
startAngle = centerAngle + ThreeHalfsPI;
|
|
endAngle = startAngle - Mathf.PI;
|
|
}
|
|
|
|
float deltaAngle = endAngle - startAngle;
|
|
float angle;
|
|
|
|
for (int i = 0; i < segments; i++)
|
|
{
|
|
angle = (deltaAngle * (float)i / (float)segments) + startAngle;
|
|
float x = r * Mathf.Cos(angle) + center.x;
|
|
float y = r * Mathf.Sin(angle) + center.y;
|
|
generatedIndices[indexWritePos++] = vertexWritePos;
|
|
generatedIndices[indexWritePos++] = vertexWritePos + 1;
|
|
generatedVertices[vertexWritePos++] = new Vector3(x, y, 0);
|
|
}
|
|
angle = deltaAngle + startAngle;
|
|
generatedVertices[vertexWritePos++] = new Vector3(r * Mathf.Cos(angle) + center.x, r * Mathf.Sin(angle) + center.y, 0);
|
|
}
|
|
|
|
internal void AddCapsule(Vector3 pt0, Vector3 pt1, float r0, float r1, NativeArray<Vector3> generatedVertices, NativeArray<int> generatedIndices, bool reverseWindingOrder, ref int vertexWritePos, ref int indexWritePos)
|
|
{
|
|
// Add Straight Segments
|
|
Vector3 delta = (pt1 - pt0).normalized;
|
|
Vector3 relOffset0 = new Vector3(delta.y, -delta.x, 0);
|
|
Vector3 relOffset1 = new Vector3(-delta.y, delta.x, 0);
|
|
|
|
if (pt1.x < pt0.x)
|
|
{
|
|
Vector3 temp = pt0;
|
|
pt0 = pt1;
|
|
pt1 = temp;
|
|
}
|
|
|
|
int circle0Start = vertexWritePos;
|
|
|
|
// Add circles
|
|
AddCapsuleCap(pt0, r0, pt1, generatedVertices, generatedIndices, reverseWindingOrder, ref vertexWritePos, ref indexWritePos);
|
|
generatedIndices[indexWritePos++] = vertexWritePos - 1;
|
|
generatedIndices[indexWritePos++] = vertexWritePos;
|
|
AddCapsuleCap(pt1, r1, pt0, generatedVertices, generatedIndices, reverseWindingOrder, ref vertexWritePos, ref indexWritePos);
|
|
generatedIndices[indexWritePos++] = vertexWritePos - 1;
|
|
generatedIndices[indexWritePos++] = circle0Start;
|
|
}
|
|
|
|
internal int AddShape(NativeArray<Vector3> vertices, NativeArray<int> indices, int indicesProcessed, NativeArray<Vector3> generatedVertices, NativeArray<int> generatedIndices, ref int vertexWritePos, ref int indexWritePos)
|
|
{
|
|
int indexToProcess = indicesProcessed;
|
|
int prevIndex = indices[indexToProcess];
|
|
int startIndex = indices[indexToProcess];
|
|
int startWriteIndex = vertexWritePos;
|
|
|
|
generatedVertices[vertexWritePos++] = vertices[prevIndex];
|
|
|
|
bool continueProcessing = true;
|
|
while (indexToProcess < indices.Length && continueProcessing)
|
|
{
|
|
int index0 = indices[indexToProcess++];
|
|
int index1 = indices[indexToProcess++];
|
|
|
|
generatedIndices[indexWritePos++] = vertexWritePos - 1;
|
|
|
|
if (index1 != startIndex)
|
|
{
|
|
generatedIndices[indexWritePos++] = vertexWritePos;
|
|
generatedVertices[vertexWritePos++] = vertices[index1];
|
|
continueProcessing = index0 == prevIndex;
|
|
}
|
|
else
|
|
{
|
|
generatedIndices[indexWritePos++] = startWriteIndex;
|
|
continueProcessing = false;
|
|
}
|
|
|
|
prevIndex = index1;
|
|
}
|
|
|
|
return indexToProcess;
|
|
}
|
|
|
|
public override void SetShape(NativeArray<Vector3> vertices, NativeArray<int> indices, NativeArray<float> radii, Matrix4x4 transform, ShadowShape2D.WindingOrder windingOrder = ShadowShape2D.WindingOrder.Clockwise, bool allowTriming = true, bool createInteriorGeometry = false)
|
|
{
|
|
if (m_TrimEdge == k_TrimEdgeUninitialized)
|
|
m_TrimEdge = m_InitialTrim;
|
|
|
|
if (m_Mesh == null)
|
|
m_Mesh = new Mesh();
|
|
|
|
if (indices.Length == 0)
|
|
{
|
|
m_Mesh.Clear();
|
|
return;
|
|
}
|
|
|
|
bool reverseWindingOrder = windingOrder == ShadowShape2D.WindingOrder.CounterClockwise;
|
|
|
|
|
|
int circleCount = 0;
|
|
int capsuleCount = 0;
|
|
for (int i = 0; i < indices.Length; i += 2)
|
|
{
|
|
int index0 = indices[i];
|
|
int index1 = indices[i + 1];
|
|
|
|
if (radii[index0] > 0 || radii[index1] > 0)
|
|
{
|
|
if (index0 == index1)
|
|
circleCount++;
|
|
else
|
|
capsuleCount++;
|
|
}
|
|
}
|
|
|
|
int capsuleStraightSegments = capsuleCount * 2;
|
|
int capsuleCapSegments = capsuleCount * k_CapsuleCapSegments; // This can be refined later
|
|
int circleSegments = circleCount * 2 * k_CapsuleCapSegments;
|
|
|
|
int lineCount = (indices.Length >> 1) - (capsuleCount + circleCount);
|
|
int indexCount = 2 * (lineCount + capsuleStraightSegments + (2 * capsuleCapSegments) + circleSegments);
|
|
int vertexCount = indexCount; // Keep this simple for now
|
|
|
|
NativeArray<Vector3> generatedVertices = new NativeArray<Vector3>(vertexCount, Allocator.Temp);
|
|
NativeArray<int> generatedIndices = new NativeArray<int>(indexCount, Allocator.Temp);
|
|
|
|
int vertexWritePos = 0;
|
|
int indexWritePos = 0;
|
|
int indicesProcessed = 0;
|
|
while (indicesProcessed < indices.Length)
|
|
{
|
|
int v0 = indices[indicesProcessed];
|
|
int v1 = indices[indicesProcessed + 1];
|
|
|
|
float r0 = radii[v0];
|
|
float r1 = radii[v1];
|
|
|
|
if (radii[v0] > 0 || radii[v1] > 0)
|
|
{
|
|
Vector3 pt0 = vertices[v0];
|
|
Vector3 pt1 = vertices[v1];
|
|
|
|
if (vertices[v0].x == vertices[v1].x && vertices[v0].y == vertices[v1].y)
|
|
AddCircle(pt0, r0, generatedVertices, generatedIndices, reverseWindingOrder, ref vertexWritePos, ref indexWritePos);
|
|
else
|
|
AddCapsule(pt0, pt1, r0, r1, generatedVertices, generatedIndices, reverseWindingOrder, ref vertexWritePos, ref indexWritePos);
|
|
|
|
indicesProcessed += 2;
|
|
}
|
|
else
|
|
{
|
|
// Will add edges or polygons
|
|
indicesProcessed = AddShape(vertices, indices, indicesProcessed, generatedVertices, generatedIndices, ref vertexWritePos, ref indexWritePos);
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < generatedVertices.Length; i++)
|
|
generatedVertices[i] = transform.MultiplyPoint(generatedVertices[i]);
|
|
|
|
NativeArray<ShadowEdge> calculatedEdges;
|
|
NativeArray<int> calculatedStartingEdges;
|
|
NativeArray<bool> calculatedIsClosedArray;
|
|
|
|
ShadowUtility.CalculateEdgesFromLines(ref generatedIndices, out calculatedEdges, out calculatedStartingEdges, out calculatedIsClosedArray);
|
|
|
|
if (reverseWindingOrder)
|
|
ShadowUtility.ReverseWindingOrder(ref calculatedStartingEdges, ref calculatedEdges);
|
|
|
|
if (m_EdgeProcessing == EdgeProcessing.Clipping)
|
|
{
|
|
NativeArray<Vector3> clippedVertices;
|
|
NativeArray<ShadowEdge> clippedEdges;
|
|
NativeArray<int> clippedStartingIndices;
|
|
|
|
ShadowUtility.ClipEdges(ref generatedVertices, ref calculatedEdges, ref calculatedStartingEdges, ref calculatedIsClosedArray, trimEdge, out clippedVertices, out clippedEdges, out clippedStartingIndices);
|
|
|
|
if (clippedStartingIndices.Length > 0)
|
|
m_LocalBounds = ShadowUtility.GenerateShadowMesh(m_Mesh, clippedVertices, clippedEdges, clippedStartingIndices, calculatedIsClosedArray, true, createInteriorGeometry, ShadowShape2D.OutlineTopology.Lines);
|
|
else
|
|
{
|
|
m_LocalBounds = new Bounds();
|
|
m_Mesh.Clear();
|
|
}
|
|
|
|
clippedVertices.Dispose();
|
|
clippedEdges.Dispose();
|
|
clippedStartingIndices.Dispose();
|
|
}
|
|
else
|
|
{
|
|
m_LocalBounds = ShadowUtility.GenerateShadowMesh(m_Mesh, generatedVertices, calculatedEdges, calculatedStartingEdges, calculatedIsClosedArray, true, createInteriorGeometry, ShadowShape2D.OutlineTopology.Lines);
|
|
}
|
|
|
|
generatedVertices.Dispose();
|
|
generatedIndices.Dispose();
|
|
calculatedEdges.Dispose();
|
|
calculatedIsClosedArray.Dispose();
|
|
calculatedStartingEdges.Dispose();
|
|
|
|
}
|
|
|
|
|
|
bool AreDegenerateVertices(NativeArray<Vector3> vertices)
|
|
{
|
|
if (vertices == null || vertices.Length == 0)
|
|
return true;
|
|
|
|
// This should is a trade off between perfomance and accuracy. This may need to be refined later if we find cases where this is not good enough.
|
|
int prevIndex = vertices.Length - 1;
|
|
for (int i=0;i< vertices.Length; i++)
|
|
{
|
|
if (vertices[prevIndex].x != vertices[i].x || vertices[prevIndex].y != vertices[i].y)
|
|
return false;
|
|
|
|
prevIndex = i;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
public override void SetShape(NativeArray<Vector3> vertices, NativeArray<int> indices, ShadowShape2D.OutlineTopology outlineTopology, ShadowShape2D.WindingOrder windingOrder = ShadowShape2D.WindingOrder.Clockwise, bool allowTrimming = true, bool createInteriorGeometry = false)
|
|
{
|
|
if (AreDegenerateVertices(vertices))
|
|
return;
|
|
|
|
if (m_TrimEdge == k_TrimEdgeUninitialized)
|
|
m_TrimEdge = m_InitialTrim;
|
|
|
|
|
|
bool disposeVertices = false;
|
|
NativeArray<ShadowEdge> edges;
|
|
NativeArray<int> shapeStartingIndices;
|
|
NativeArray<bool> shapeIsClosedArray;
|
|
|
|
if (m_Mesh == null)
|
|
m_Mesh = new Mesh();
|
|
|
|
if (indices.Length == 0)
|
|
{
|
|
m_Mesh.Clear();
|
|
return;
|
|
}
|
|
|
|
if (outlineTopology == ShadowShape2D.OutlineTopology.Triangles)
|
|
{
|
|
NativeArray<Vector3> newVertices;
|
|
ShadowUtility.CalculateEdgesFromTriangles(ref vertices, ref indices, true, out newVertices, out edges, out shapeStartingIndices, out shapeIsClosedArray);
|
|
|
|
disposeVertices = true;
|
|
vertices = newVertices;
|
|
}
|
|
else // if (outlineTopology == ShadowShape2D.OutlineTopology.Lines)
|
|
{
|
|
ShadowUtility.CalculateEdgesFromLines(ref indices, out edges, out shapeStartingIndices, out shapeIsClosedArray);
|
|
}
|
|
|
|
if (windingOrder == ShadowShape2D.WindingOrder.CounterClockwise)
|
|
ShadowUtility.ReverseWindingOrder(ref shapeStartingIndices, ref edges);
|
|
|
|
// It would be better if we don't have to rerun SetShape after a trimEdge change.
|
|
if (m_EdgeProcessing == EdgeProcessing.Clipping && allowTrimming)
|
|
{
|
|
NativeArray<Vector3> clippedVertices;
|
|
NativeArray<ShadowEdge> clippedEdges;
|
|
NativeArray<int> clippedStartingIndices;
|
|
|
|
ShadowUtility.ClipEdges(ref vertices, ref edges, ref shapeStartingIndices, ref shapeIsClosedArray, trimEdge, out clippedVertices, out clippedEdges, out clippedStartingIndices);
|
|
|
|
m_LocalBounds = ShadowUtility.GenerateShadowMesh(m_Mesh, clippedVertices, clippedEdges, clippedStartingIndices, shapeIsClosedArray, allowTrimming, createInteriorGeometry, outlineTopology);
|
|
|
|
clippedVertices.Dispose();
|
|
clippedEdges.Dispose();
|
|
clippedStartingIndices.Dispose();
|
|
}
|
|
else
|
|
{
|
|
m_LocalBounds = ShadowUtility.GenerateShadowMesh(m_Mesh, vertices, edges, shapeStartingIndices, shapeIsClosedArray, allowTrimming, createInteriorGeometry, outlineTopology);
|
|
}
|
|
|
|
if(disposeVertices)
|
|
vertices.Dispose();
|
|
|
|
edges.Dispose();
|
|
shapeStartingIndices.Dispose();
|
|
shapeIsClosedArray.Dispose();
|
|
}
|
|
|
|
public void SetShapeWithLines(NativeArray<Vector3> vertices, NativeArray<int> indices, bool allowTrimming)
|
|
{
|
|
SetShape(vertices, indices, ShadowShape2D.OutlineTopology.Lines, allowTrimming: allowTrimming);
|
|
}
|
|
|
|
public override void SetFlip(bool flipX, bool flipY)
|
|
{
|
|
m_FlipX = flipX;
|
|
m_FlipY = flipY;
|
|
}
|
|
|
|
public override void GetFlip(out bool flipX, out bool flipY)
|
|
{
|
|
flipX = m_FlipX;
|
|
flipY = m_FlipY;
|
|
|
|
}
|
|
|
|
public override void SetDefaultTrim(float trim)
|
|
{
|
|
m_InitialTrim = trim;
|
|
}
|
|
|
|
public void UpdateBoundingSphere(Transform transform)
|
|
{
|
|
var maxBound = transform.TransformPoint(m_LocalBounds.max);
|
|
var minBound = transform.TransformPoint(m_LocalBounds.min);
|
|
var center = 0.5f * (maxBound + minBound);
|
|
var radius = Vector3.Magnitude(maxBound - center);
|
|
|
|
m_BoundingSphere = new BoundingSphere(center, radius);
|
|
}
|
|
}
|
|
}
|