UnityGame/Library/PackageCache/com.unity.collections/Unity.Collections/UnsafeQueue.cs
2024-10-27 10:53:47 +03:00

900 lines
33 KiB
C#

using System;
using System.Runtime.InteropServices;
using System.Threading;
using Unity.Collections.LowLevel.Unsafe;
using Unity.Burst;
using Unity.Jobs;
using Unity.Jobs.LowLevel.Unsafe;
using System.Diagnostics;
using System.Runtime.CompilerServices;
using System.Collections;
using System.Collections.Generic;
namespace Unity.Collections
{
[StructLayout(LayoutKind.Sequential)]
unsafe struct UnsafeQueueBlockHeader
{
public UnsafeQueueBlockHeader* m_NextBlock;
public int m_NumItems;
}
[StructLayout(LayoutKind.Sequential)]
[GenerateTestsForBurstCompatibility]
internal unsafe struct UnsafeQueueBlockPoolData
{
internal IntPtr m_FirstBlock;
internal int m_NumBlocks;
internal int m_MaxBlocks;
internal const int m_BlockSize = 16 * 1024;
internal int m_AllocLock;
public UnsafeQueueBlockHeader* AllocateBlock()
{
// There can only ever be a single thread allocating an entry from the free list since it needs to
// access the content of the block (the next pointer) before doing the CAS.
// If there was no lock thread A could read the next pointer, thread B could quickly allocate
// the same block then free it with another next pointer before thread A performs the CAS which
// leads to an invalid free list potentially causing memory corruption.
// Having multiple threads freeing data concurrently to each other while another thread is allocating
// is no problems since there is only ever a single thread modifying global data in that case.
while (Interlocked.CompareExchange(ref m_AllocLock, 1, 0) != 0)
{
}
UnsafeQueueBlockHeader* checkBlock = (UnsafeQueueBlockHeader*)m_FirstBlock;
UnsafeQueueBlockHeader* block;
do
{
block = checkBlock;
if (block == null)
{
Interlocked.Exchange(ref m_AllocLock, 0);
Interlocked.Increment(ref m_NumBlocks);
block = (UnsafeQueueBlockHeader*)Memory.Unmanaged.Allocate(m_BlockSize, 16, Allocator.Persistent);
return block;
}
checkBlock = (UnsafeQueueBlockHeader*)Interlocked.CompareExchange(ref m_FirstBlock, (IntPtr)block->m_NextBlock, (IntPtr)block);
}
while (checkBlock != block);
Interlocked.Exchange(ref m_AllocLock, 0);
return block;
}
public void FreeBlock(UnsafeQueueBlockHeader* block)
{
if (m_NumBlocks > m_MaxBlocks)
{
if (Interlocked.Decrement(ref m_NumBlocks) + 1 > m_MaxBlocks)
{
Memory.Unmanaged.Free(block, Allocator.Persistent);
return;
}
Interlocked.Increment(ref m_NumBlocks);
}
UnsafeQueueBlockHeader* checkBlock = (UnsafeQueueBlockHeader*)m_FirstBlock;
UnsafeQueueBlockHeader* nextPtr;
do
{
nextPtr = checkBlock;
block->m_NextBlock = checkBlock;
checkBlock = (UnsafeQueueBlockHeader*)Interlocked.CompareExchange(ref m_FirstBlock, (IntPtr)block, (IntPtr)checkBlock);
}
while (checkBlock != nextPtr);
}
}
internal unsafe class UnsafeQueueBlockPool
{
static readonly SharedStatic<IntPtr> Data = SharedStatic<IntPtr>.GetOrCreate<UnsafeQueueBlockPool>();
internal static UnsafeQueueBlockPoolData* GetQueueBlockPool()
{
var pData = (UnsafeQueueBlockPoolData**)Data.UnsafeDataPointer;
var data = *pData;
if (data == null)
{
data = (UnsafeQueueBlockPoolData*)Memory.Unmanaged.Allocate(UnsafeUtility.SizeOf<UnsafeQueueBlockPoolData>(), 8, Allocator.Persistent);
*pData = data;
data->m_NumBlocks = data->m_MaxBlocks = 256;
data->m_AllocLock = 0;
// Allocate MaxBlocks items
UnsafeQueueBlockHeader* prev = null;
for (int i = 0; i < data->m_MaxBlocks; ++i)
{
UnsafeQueueBlockHeader* block = (UnsafeQueueBlockHeader*)Memory.Unmanaged.Allocate(UnsafeQueueBlockPoolData.m_BlockSize, 16, Allocator.Persistent);
block->m_NextBlock = prev;
prev = block;
}
data->m_FirstBlock = (IntPtr)prev;
AppDomainOnDomainUnload();
}
return data;
}
[BurstDiscard]
static void AppDomainOnDomainUnload()
{
AppDomain.CurrentDomain.DomainUnload += OnDomainUnload;
}
static void OnDomainUnload(object sender, EventArgs e)
{
var pData = (UnsafeQueueBlockPoolData**)Data.UnsafeDataPointer;
var data = *pData;
while (data->m_FirstBlock != IntPtr.Zero)
{
UnsafeQueueBlockHeader* block = (UnsafeQueueBlockHeader*)data->m_FirstBlock;
data->m_FirstBlock = (IntPtr)block->m_NextBlock;
Memory.Unmanaged.Free(block, Allocator.Persistent);
--data->m_NumBlocks;
}
Memory.Unmanaged.Free(data, Allocator.Persistent);
*pData = null;
}
}
[StructLayout(LayoutKind.Sequential)]
[GenerateTestsForBurstCompatibility]
internal unsafe struct UnsafeQueueData
{
public IntPtr m_FirstBlock;
public IntPtr m_LastBlock;
public int m_MaxItems;
public int m_CurrentRead;
public byte* m_CurrentWriteBlockTLS;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal UnsafeQueueBlockHeader* GetCurrentWriteBlockTLS(int threadIndex)
{
var data = (UnsafeQueueBlockHeader**)&m_CurrentWriteBlockTLS[threadIndex * JobsUtility.CacheLineSize];
return *data;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal void SetCurrentWriteBlockTLS(int threadIndex, UnsafeQueueBlockHeader* currentWriteBlock)
{
var data = (UnsafeQueueBlockHeader**)&m_CurrentWriteBlockTLS[threadIndex * JobsUtility.CacheLineSize];
*data = currentWriteBlock;
}
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new [] { typeof(int) })]
public static UnsafeQueueBlockHeader* AllocateWriteBlockMT<T>(UnsafeQueueData* data, UnsafeQueueBlockPoolData* pool, int threadIndex) where T : unmanaged
{
UnsafeQueueBlockHeader* currentWriteBlock = data->GetCurrentWriteBlockTLS(threadIndex);
if (currentWriteBlock != null)
{
if (currentWriteBlock->m_NumItems != data->m_MaxItems)
{
return currentWriteBlock;
}
currentWriteBlock = null;
}
currentWriteBlock = pool->AllocateBlock();
currentWriteBlock->m_NextBlock = null;
currentWriteBlock->m_NumItems = 0;
UnsafeQueueBlockHeader* prevLast = (UnsafeQueueBlockHeader*)Interlocked.Exchange(ref data->m_LastBlock, (IntPtr)currentWriteBlock);
if (prevLast == null)
{
data->m_FirstBlock = (IntPtr)currentWriteBlock;
}
else
{
prevLast->m_NextBlock = currentWriteBlock;
}
data->SetCurrentWriteBlockTLS(threadIndex, currentWriteBlock);
return currentWriteBlock;
}
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new [] { typeof(int) })]
public unsafe static void AllocateQueue<T>(AllocatorManager.AllocatorHandle label, out UnsafeQueueData* outBuf) where T : unmanaged
{
#if UNITY_2022_2_14F1_OR_NEWER
int maxThreadCount = JobsUtility.ThreadIndexCount;
#else
int maxThreadCount = JobsUtility.MaxJobThreadCount;
#endif
var queueDataSize = CollectionHelper.Align(UnsafeUtility.SizeOf<UnsafeQueueData>(), JobsUtility.CacheLineSize);
var data = (UnsafeQueueData*)Memory.Unmanaged.Allocate(
queueDataSize
+ JobsUtility.CacheLineSize * maxThreadCount
, JobsUtility.CacheLineSize
, label
);
data->m_CurrentWriteBlockTLS = (((byte*)data) + queueDataSize);
data->m_FirstBlock = IntPtr.Zero;
data->m_LastBlock = IntPtr.Zero;
data->m_MaxItems = (UnsafeQueueBlockPoolData.m_BlockSize - UnsafeUtility.SizeOf<UnsafeQueueBlockHeader>()) / UnsafeUtility.SizeOf<T>();
data->m_CurrentRead = 0;
for (int threadIndex = 0; threadIndex < maxThreadCount; ++threadIndex)
{
data->SetCurrentWriteBlockTLS(threadIndex, null);
}
outBuf = data;
}
public unsafe static void DeallocateQueue(UnsafeQueueData* data, UnsafeQueueBlockPoolData* pool, AllocatorManager.AllocatorHandle allocation)
{
UnsafeQueueBlockHeader* firstBlock = (UnsafeQueueBlockHeader*)data->m_FirstBlock;
while (firstBlock != null)
{
UnsafeQueueBlockHeader* next = firstBlock->m_NextBlock;
pool->FreeBlock(firstBlock);
firstBlock = next;
}
Memory.Unmanaged.Free(data, allocation);
}
}
/// <summary>
/// An unmanaged queue.
/// </summary>
/// <typeparam name="T">The type of the elements.</typeparam>
[StructLayout(LayoutKind.Sequential)]
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new [] { typeof(int) })]
public unsafe struct UnsafeQueue<T>
: INativeDisposable
where T : unmanaged
{
[NativeDisableUnsafePtrRestriction]
internal UnsafeQueueData* m_Buffer;
[NativeDisableUnsafePtrRestriction]
internal UnsafeQueueBlockPoolData* m_QueuePool;
internal AllocatorManager.AllocatorHandle m_AllocatorLabel;
/// <summary>
/// Initializes and returns an instance of UnsafeQueue.
/// </summary>
/// <param name="allocator">The allocator to use.</param>
public UnsafeQueue(AllocatorManager.AllocatorHandle allocator)
{
m_QueuePool = UnsafeQueueBlockPool.GetQueueBlockPool();
m_AllocatorLabel = allocator;
UnsafeQueueData.AllocateQueue<T>(allocator, out m_Buffer);
}
internal static UnsafeQueue<T>* Alloc(AllocatorManager.AllocatorHandle allocator)
{
UnsafeQueue<T>* data = (UnsafeQueue<T>*)Memory.Unmanaged.Allocate(sizeof(UnsafeQueue<T>), UnsafeUtility.AlignOf<UnsafeQueue<T>>(), allocator);
return data;
}
internal static void Free(UnsafeQueue<T>* data)
{
if (data == null)
{
throw new InvalidOperationException("UnsafeQueue has yet to be created or has been destroyed!");
}
var allocator = data->m_AllocatorLabel;
data->Dispose();
Memory.Unmanaged.Free(data, allocator);
}
/// <summary>
/// Returns true if this queue is empty.
/// </summary>
/// <returns>True if this queue has no items or if the queue has not been constructed.</returns>
public readonly bool IsEmpty()
{
if (IsCreated)
{
int count = 0;
var currentRead = m_Buffer->m_CurrentRead;
for (UnsafeQueueBlockHeader* block = (UnsafeQueueBlockHeader*)m_Buffer->m_FirstBlock
; block != null
; block = block->m_NextBlock
)
{
count += block->m_NumItems;
if (count > currentRead)
{
return false;
}
}
return count == currentRead;
}
return true;
}
/// <summary>
/// Returns the current number of elements in this queue.
/// </summary>
/// <remarks>Note that getting the count requires traversing the queue's internal linked list of blocks.
/// Where possible, cache this value instead of reading the property repeatedly.</remarks>
/// <returns>The current number of elements in this queue.</returns>
public readonly int Count
{
get
{
int count = 0;
for (UnsafeQueueBlockHeader* block = (UnsafeQueueBlockHeader*)m_Buffer->m_FirstBlock
; block != null
; block = block->m_NextBlock
)
{
count += block->m_NumItems;
}
return count - m_Buffer->m_CurrentRead;
}
}
internal static int PersistentMemoryBlockCount
{
get { return UnsafeQueueBlockPool.GetQueueBlockPool()->m_MaxBlocks; }
set { Interlocked.Exchange(ref UnsafeQueueBlockPool.GetQueueBlockPool()->m_MaxBlocks, value); }
}
internal static int MemoryBlockSize
{
get { return UnsafeQueueBlockPoolData.m_BlockSize; }
}
/// <summary>
/// Returns the element at the front of this queue without removing it.
/// </summary>
/// <returns>The element at the front of this queue.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public T Peek()
{
CheckNotEmpty();
UnsafeQueueBlockHeader* firstBlock = (UnsafeQueueBlockHeader*)m_Buffer->m_FirstBlock;
return UnsafeUtility.ReadArrayElement<T>(firstBlock + 1, m_Buffer->m_CurrentRead);
}
/// <summary>
/// Adds an element at the back of this queue.
/// </summary>
/// <param name="value">The value to be enqueued.</param>
public void Enqueue(T value)
{
UnsafeQueueBlockHeader* writeBlock = UnsafeQueueData.AllocateWriteBlockMT<T>(m_Buffer, m_QueuePool, 0);
UnsafeUtility.WriteArrayElement(writeBlock + 1, writeBlock->m_NumItems, value);
++writeBlock->m_NumItems;
}
/// <summary>
/// Removes and returns the element at the front of this queue.
/// </summary>
/// <exception cref="InvalidOperationException">Thrown if this queue is empty.</exception>
/// <returns>The element at the front of this queue.</returns>
public T Dequeue()
{
if (!TryDequeue(out T item))
{
ThrowEmpty();
}
return item;
}
/// <summary>
/// Removes and outputs the element at the front of this queue.
/// </summary>
/// <param name="item">Outputs the removed element.</param>
/// <returns>True if this queue was not empty.</returns>
public bool TryDequeue(out T item)
{
UnsafeQueueBlockHeader* firstBlock = (UnsafeQueueBlockHeader*)m_Buffer->m_FirstBlock;
if (firstBlock != null)
{
var currentRead = m_Buffer->m_CurrentRead++;
var numItems = firstBlock->m_NumItems;
item = UnsafeUtility.ReadArrayElement<T>(firstBlock + 1, currentRead);
if (currentRead + 1 >= numItems)
{
m_Buffer->m_CurrentRead = 0;
m_Buffer->m_FirstBlock = (IntPtr)firstBlock->m_NextBlock;
if (m_Buffer->m_FirstBlock == IntPtr.Zero)
{
m_Buffer->m_LastBlock = IntPtr.Zero;
}
#if UNITY_2022_2_14F1_OR_NEWER
int maxThreadCount = JobsUtility.ThreadIndexCount;
#else
int maxThreadCount = JobsUtility.MaxJobThreadCount;
#endif
for (int threadIndex = 0; threadIndex < maxThreadCount; ++threadIndex)
{
if (m_Buffer->GetCurrentWriteBlockTLS(threadIndex) == firstBlock)
{
m_Buffer->SetCurrentWriteBlockTLS(threadIndex, null);
}
}
m_QueuePool->FreeBlock(firstBlock);
}
return true;
}
item = default(T);
return false;
}
/// <summary>
/// Returns an array containing a copy of this queue's content.
/// </summary>
/// <param name="allocator">The allocator to use.</param>
/// <returns>An array containing a copy of this queue's content. The elements are ordered in the same order they were
/// enqueued, *e.g.* the earliest enqueued element is copied to index 0 of the array.</returns>
public NativeArray<T> ToArray(AllocatorManager.AllocatorHandle allocator)
{
UnsafeQueueBlockHeader* firstBlock = (UnsafeQueueBlockHeader*)m_Buffer->m_FirstBlock;
var outputArray = CollectionHelper.CreateNativeArray<T>(Count, allocator, NativeArrayOptions.UninitializedMemory);
UnsafeQueueBlockHeader* currentBlock = firstBlock;
var arrayPtr = (byte*)outputArray.GetUnsafePtr();
int size = UnsafeUtility.SizeOf<T>();
int dstOffset = 0;
int srcOffset = m_Buffer->m_CurrentRead * size;
int srcOffsetElements = m_Buffer->m_CurrentRead;
while (currentBlock != null)
{
int bytesToCopy = (currentBlock->m_NumItems - srcOffsetElements) * size;
UnsafeUtility.MemCpy(arrayPtr + dstOffset, (byte*)(currentBlock + 1) + srcOffset, bytesToCopy);
srcOffset = srcOffsetElements = 0;
dstOffset += bytesToCopy;
currentBlock = currentBlock->m_NextBlock;
}
return outputArray;
}
/// <summary>
/// Removes all elements of this queue.
/// </summary>
public void Clear()
{
UnsafeQueueBlockHeader* firstBlock = (UnsafeQueueBlockHeader*)m_Buffer->m_FirstBlock;
while (firstBlock != null)
{
UnsafeQueueBlockHeader* next = firstBlock->m_NextBlock;
m_QueuePool->FreeBlock(firstBlock);
firstBlock = next;
}
m_Buffer->m_FirstBlock = IntPtr.Zero;
m_Buffer->m_LastBlock = IntPtr.Zero;
m_Buffer->m_CurrentRead = 0;
#if UNITY_2022_2_14F1_OR_NEWER
int maxThreadCount = JobsUtility.ThreadIndexCount;
#else
int maxThreadCount = JobsUtility.MaxJobThreadCount;
#endif
for (int threadIndex = 0; threadIndex < maxThreadCount; ++threadIndex)
{
m_Buffer->SetCurrentWriteBlockTLS(threadIndex, null);
}
}
/// <summary>
/// Whether this queue has been allocated (and not yet deallocated).
/// </summary>
/// <value>True if this queue has been allocated (and not yet deallocated).</value>
public readonly bool IsCreated
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get => m_Buffer != null;
}
/// <summary>
/// Releases all resources (memory and safety handles).
/// </summary>
public void Dispose()
{
if (!IsCreated)
{
return;
}
UnsafeQueueData.DeallocateQueue(m_Buffer, m_QueuePool, m_AllocatorLabel);
m_Buffer = null;
m_QueuePool = null;
}
/// <summary>
/// Creates and schedules a job that releases all resources (memory and safety handles) of this queue.
/// </summary>
/// <param name="inputDeps">The dependency for the new job.</param>
/// <returns>The handle of the new job. The job depends upon `inputDeps` and releases all resources (memory and safety handles) of this queue.</returns>
public JobHandle Dispose(JobHandle inputDeps)
{
if (!IsCreated)
{
return inputDeps;
}
var jobHandle = new UnsafeQueueDisposeJob { Data = new UnsafeQueueDispose { m_Buffer = m_Buffer, m_QueuePool = m_QueuePool, m_AllocatorLabel = m_AllocatorLabel } }.Schedule(inputDeps);
m_Buffer = null;
m_QueuePool = null;
return jobHandle;
}
/// <summary>
/// An enumerator over the values of a container.
/// </summary>
/// <remarks>
/// In an enumerator's initial state, <see cref="Current"/> is invalid.
/// The first <see cref="MoveNext"/> call advances the enumerator to the first value.
/// </remarks>
public struct Enumerator : IEnumerator<T>
{
[NativeDisableUnsafePtrRestriction]
internal UnsafeQueueBlockHeader* m_FirstBlock;
[NativeDisableUnsafePtrRestriction]
internal UnsafeQueueBlockHeader* m_Block;
internal int m_Index;
T value;
/// <summary>
/// Does nothing.
/// </summary>
public void Dispose() { }
/// <summary>
/// Advances the enumerator to the next value.
/// </summary>
/// <returns>True if `Current` is valid to read after the call.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool MoveNext()
{
m_Index++;
for (; m_Block != null
; m_Block = m_Block->m_NextBlock
)
{
var numItems = m_Block->m_NumItems;
if (m_Index < numItems)
{
value = UnsafeUtility.ReadArrayElement<T>(m_Block + 1, m_Index);
return true;
}
m_Index -= numItems;
}
value = default;
return false;
}
/// <summary>
/// Resets the enumerator to its initial state.
/// </summary>
public void Reset()
{
m_Block = m_FirstBlock;
m_Index = -1;
}
/// <summary>
/// The current value.
/// </summary>
/// <value>The current value.</value>
public T Current
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get => value;
}
object IEnumerator.Current => Current;
}
/// <summary>
/// Returns a readonly version of this UnsafeQueue instance.
/// </summary>
/// <remarks>ReadOnly containers point to the same underlying data as the UnsafeQueue it is made from.</remarks>
/// <returns>ReadOnly instance for this.</returns>
public ReadOnly AsReadOnly()
{
return new ReadOnly(ref this);
}
/// <summary>
/// A read-only alias for the value of a UnsafeQueue. Does not have its own allocated storage.
/// </summary>
public struct ReadOnly
: IEnumerable<T>
{
[NativeDisableUnsafePtrRestriction]
UnsafeQueueData* m_Buffer;
internal ReadOnly(ref UnsafeQueue<T> data)
{
m_Buffer = data.m_Buffer;
}
/// <summary>
/// Whether this container been allocated (and not yet deallocated).
/// </summary>
/// <value>True if this container has been allocated (and not yet deallocated).</value>
public readonly bool IsCreated
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get
{
return m_Buffer != null;
}
}
/// <summary>
/// Returns true if this queue is empty.
/// </summary>
/// <remarks>Note that getting the count requires traversing the queue's internal linked list of blocks.
/// Where possible, cache this value instead of reading the property repeatedly.</remarks>
/// <returns>True if this queue has no items or if the queue has not been constructed.</returns>
public readonly bool IsEmpty()
{
int count = 0;
var currentRead = m_Buffer->m_CurrentRead;
for (UnsafeQueueBlockHeader* block = (UnsafeQueueBlockHeader*)m_Buffer->m_FirstBlock
; block != null
; block = block->m_NextBlock
)
{
count += block->m_NumItems;
if (count > currentRead)
{
return false;
}
}
return count == currentRead;
}
/// <summary>
/// Returns the current number of elements in this queue.
/// </summary>
/// <remarks>Note that getting the count requires traversing the queue's internal linked list of blocks.
/// Where possible, cache this value instead of reading the property repeatedly.</remarks>
/// <returns>The current number of elements in this queue.</returns>
public readonly int Count
{
get
{
int count = 0;
for (UnsafeQueueBlockHeader* block = (UnsafeQueueBlockHeader*)m_Buffer->m_FirstBlock
; block != null
; block = block->m_NextBlock
)
{
count += block->m_NumItems;
}
return count - m_Buffer->m_CurrentRead;
}
}
/// <summary>
/// The element at an index.
/// </summary>
/// <param name="index">An index.</param>
/// <value>The element at the index.</value>
/// <exception cref="IndexOutOfRangeException">Thrown if the index is out of bounds.</exception>
public readonly T this[int index]
{
get
{
T result;
if (!TryGetValue(index, out result))
{
ThrowIndexOutOfRangeException(index);
}
return result;
}
}
readonly bool TryGetValue(int index, out T item)
{
if (index >= 0)
{
var idx = index;
for (UnsafeQueueBlockHeader* block = (UnsafeQueueBlockHeader*)m_Buffer->m_FirstBlock
; block != null
; block = block->m_NextBlock
)
{
var numItems = block->m_NumItems;
if (idx < numItems)
{
item = UnsafeUtility.ReadArrayElement<T>(block + 1, idx);
return true;
}
idx -= numItems;
}
}
item = default;
return false;
}
/// <summary>
/// Returns an enumerator over the items of this container.
/// </summary>
/// <returns>An enumerator over the items of this container.</returns>
public readonly Enumerator GetEnumerator()
{
return new Enumerator
{
m_FirstBlock = (UnsafeQueueBlockHeader*)m_Buffer->m_FirstBlock,
m_Block = (UnsafeQueueBlockHeader*)m_Buffer->m_FirstBlock,
m_Index = -1,
};
}
/// <summary>
/// This method is not implemented. Use <see cref="GetEnumerator"/> instead.
/// </summary>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator<T> IEnumerable<T>.GetEnumerator()
{
throw new NotImplementedException();
}
/// <summary>
/// This method is not implemented. Use <see cref="GetEnumerator"/> instead.
/// </summary>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator IEnumerable.GetEnumerator()
{
throw new NotImplementedException();
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
readonly void ThrowIndexOutOfRangeException(int index)
{
throw new IndexOutOfRangeException($"Index {index} is out of bounds [0-{Count}].");
}
}
/// <summary>
/// Returns a parallel writer for this queue.
/// </summary>
/// <returns>A parallel writer for this queue.</returns>
public ParallelWriter AsParallelWriter()
{
ParallelWriter writer;
writer.m_Buffer = m_Buffer;
writer.m_QueuePool = m_QueuePool;
writer.m_ThreadIndex = 0;
return writer;
}
/// <summary>
/// A parallel writer for a UnsafeQueue.
/// </summary>
/// <remarks>
/// Use <see cref="AsParallelWriter"/> to create a parallel writer for a UnsafeQueue.
/// </remarks>
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new [] { typeof(int) })]
public unsafe struct ParallelWriter
{
[NativeDisableUnsafePtrRestriction]
internal UnsafeQueueData* m_Buffer;
[NativeDisableUnsafePtrRestriction]
internal UnsafeQueueBlockPoolData* m_QueuePool;
[NativeSetThreadIndex]
internal int m_ThreadIndex;
/// <summary>
/// Adds an element at the back of the queue.
/// </summary>
/// <param name="value">The value to be enqueued.</param>
public void Enqueue(T value)
{
UnsafeQueueBlockHeader* writeBlock = UnsafeQueueData.AllocateWriteBlockMT<T>(m_Buffer, m_QueuePool, m_ThreadIndex);
UnsafeUtility.WriteArrayElement(writeBlock + 1, writeBlock->m_NumItems, value);
++writeBlock->m_NumItems;
}
/// <summary>
/// Adds an element at the back of the queue.
/// </summary>
/// <param name="value">The value to be enqueued.</param>
/// <param name="threadIndexOverride">The thread index which must be set by a field from a job struct with the <see cref="NativeSetThreadIndexAttribute"/> attribute.</param>
internal void Enqueue(T value, int threadIndexOverride)
{
UnsafeQueueBlockHeader* writeBlock = UnsafeQueueData.AllocateWriteBlockMT<T>(m_Buffer, m_QueuePool, threadIndexOverride);
UnsafeUtility.WriteArrayElement(writeBlock + 1, writeBlock->m_NumItems, value);
++writeBlock->m_NumItems;
}
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
void CheckNotEmpty()
{
if (m_Buffer->m_FirstBlock == (IntPtr)0)
{
ThrowEmpty();
}
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
static void ThrowEmpty()
{
throw new InvalidOperationException("Trying to read from an empty queue.");
}
}
[GenerateTestsForBurstCompatibility]
internal unsafe struct UnsafeQueueDispose
{
[NativeDisableUnsafePtrRestriction]
internal UnsafeQueueData* m_Buffer;
[NativeDisableUnsafePtrRestriction]
internal UnsafeQueueBlockPoolData* m_QueuePool;
internal AllocatorManager.AllocatorHandle m_AllocatorLabel;
public void Dispose()
{
UnsafeQueueData.DeallocateQueue(m_Buffer, m_QueuePool, m_AllocatorLabel);
}
}
[BurstCompile]
struct UnsafeQueueDisposeJob : IJob
{
public UnsafeQueueDispose Data;
public void Execute()
{
Data.Dispose();
}
}
}