UnityGame/Library/PackageCache/com.unity.shadergraph/ShaderGraphLibrary/Nature/SpeedTreeCommon.hlsl
2024-10-27 10:53:47 +03:00

117 lines
5.1 KiB
HLSL

// Unity built-in shader source. Copyright (c) 2023 Unity Technologies. MIT license (see license.txt)
#ifndef SPEEDTREE_COMMON_INCLUDED
#define SPEEDTREE_COMMON_INCLUDED
float3 DoLeafFacing(float3 vPos, float3 anchor)
{
float3 facingPosition = vPos - anchor; // move to origin
float offsetLen = length(facingPosition);
// rotate X -90deg: normals keep looking 'up' while cards/leaves now 'stand up' and face the view plane
facingPosition = float3(facingPosition.x, -facingPosition.z, facingPosition.y);
// extract scale from model matrix
float3x3 modelMatrix = (float3x3) GetObjectToWorldMatrix(); // UNITY_MATRIX_M
float3 scale = float3(
length(float3(modelMatrix[0][0], modelMatrix[1][0], modelMatrix[2][0])),
length(float3(modelMatrix[0][1], modelMatrix[1][1], modelMatrix[2][1])),
length(float3(modelMatrix[0][2], modelMatrix[1][2], modelMatrix[2][2]))
);
// inverse of model : discards object rotations & scale
// inverse of view : discards camera rotations
float3x3 modelMatrixInv = (float3x3) GetWorldToObjectMatrix(); // UNITY_MATRIX_I_M
float3x3 viewMatrixInv = (float3x3) GetViewToWorldMatrix(); // UNITY_MATRIX_I_V
float3x3 matCardFacingTransform = mul(modelMatrixInv, viewMatrixInv);
// re-encode the scale into the final transformation (otherwise cards would look small if tree is scaled up via world transform)
matCardFacingTransform[0] *= scale.x;
matCardFacingTransform[1] *= scale.y;
matCardFacingTransform[2] *= scale.z;
// make the leaves/cards face the camera
facingPosition = mul(matCardFacingTransform, facingPosition.xyz);
facingPosition = normalize(facingPosition) * offsetLen; // make sure the offset vector is still scaled
return facingPosition + anchor; // move back to branch
}
#define SPEEDTREE_SUPPORT_NON_UNIFORM_SCALING 0
float3 TransformWindVectorFromWorldToLocalSpace(float3 vWindDirection)
{
// we intend to transform the world-space wind vector into local space.
float3x3 modelMatrixInv = (float3x3) GetWorldToObjectMatrix(); // UNITY_MATRIX_I_M
#if SPEEDTREE_SUPPORT_NON_UNIFORM_SCALING
// the inverse world matrix would contain scale transformation as well, so we need
// to get rid of scaling of the wind direction while doing inverse rotation.
float3x3 modelMatrix = (float3x3) GetObjectToWorldMatrix(); // UNITY_MATRIX_M
float3 scaleInv = float3(
length(float3(modelMatrix[0][0], modelMatrix[1][0], modelMatrix[2][0])),
length(float3(modelMatrix[0][1], modelMatrix[1][1], modelMatrix[2][1])),
length(float3(modelMatrix[0][2], modelMatrix[1][2], modelMatrix[2][2]))
);
float3x3 matWorldToLocalSpaceRotation = float3x3( // 3x3 discards translation
modelMatrixInv[0][0] * scaleInv.x, modelMatrixInv[0][1] , modelMatrixInv[0][2],
modelMatrixInv[1][0] , modelMatrixInv[1][1] * scaleInv.y, modelMatrixInv[1][2],
modelMatrixInv[2][0] , modelMatrixInv[2][1] , modelMatrixInv[2][2] * scaleInv.z
);
float3 vLocalSpaceWind = mul(matWorldToLocalSpaceRotation, vWindDirection);
#else
// Assume uniform scaling for the object -- discard translation and invert object rotations (and scale).
// We'll normalize to get rid of scaling after the transformation.
float3 vLocalSpaceWind = mul(modelMatrixInv, vWindDirection);
#endif
float windVecLength = length(vLocalSpaceWind);
if (windVecLength > 1e-5)
vLocalSpaceWind *= (1.0f / windVecLength); // normalize
return vLocalSpaceWind;
}
#define ST_GEOM_TYPE_BRANCH 0
#define ST_GEOM_TYPE_FROND 1
#define ST_GEOM_TYPE_LEAF 2
#define ST_GEOM_TYPE_FACINGLEAF 3
int GetGeometryType(float4 uv3, out bool bLeafTwo)
{
int geometryType = (int) (uv3.w + 0.25);
bLeafTwo = geometryType > ST_GEOM_TYPE_FACINGLEAF;
if (bLeafTwo)
{
geometryType -= 2;
}
return geometryType;
}
// shadergraph stubs
void SpeedTree8LeafFacing_float(float3 vVertexLocalPosition, float4 UV1, float4 UV2, float4 UV3, out float3 vVertexLocalPositionOut)
{
vVertexLocalPositionOut = vVertexLocalPosition;
bool bDummy = false;
if (GetGeometryType(UV3, bDummy) == ST_GEOM_TYPE_FACINGLEAF)
{
float3 vAnchorPosition = float3(UV1.zw, UV2.w);
vVertexLocalPositionOut = DoLeafFacing(vVertexLocalPosition, vAnchorPosition);
}
}
void SpeedTree9LeafFacing_float(float3 vVertexLocalPosition, float4 UV2, float4 UV3, out float3 vVertexLocalPositionOut)
{
vVertexLocalPositionOut = vVertexLocalPosition;
const bool bHasCameraFacingLeaf = UV3.w > 0.0f || UV2.w > 0.0f;
if (bHasCameraFacingLeaf)
{
const float3 vAnchorPosition = UV3.w > 0.0f ? UV3.xyz : UV2.xyz;
vVertexLocalPositionOut = DoLeafFacing(vVertexLocalPosition, vAnchorPosition);
}
}
void SpeedTreeLODTransition_float(float3 ObjectSpacePosition, float4 ObjectSpacePositionNextLOD, const bool bBillboard, out float3 OutObjectSpacePosition)
{
OutObjectSpacePosition = bBillboard
? ObjectSpacePosition
: lerp(ObjectSpacePosition, ObjectSpacePositionNextLOD.xyz, unity_LODFade.x);
}
#endif // SPEEDTREE_COMMON_INCLUDED