1335 lines
72 KiB
C#
1335 lines
72 KiB
C#
using System;
|
|
using System.Runtime.CompilerServices;
|
|
using UnityEngine.Experimental.Rendering;
|
|
using UnityEngine.Profiling;
|
|
using Unity.Collections;
|
|
using Unity.Jobs;
|
|
using Unity.Mathematics;
|
|
using UnityEngine.Rendering.RenderGraphModule;
|
|
using static Unity.Mathematics.math;
|
|
//#define URP_HAS_BURST
|
|
|
|
// TODO SimpleLit material, make sure when variant is !defined(_SPECGLOSSMAP) && !defined(_SPECULAR_COLOR), specular is correctly silenced.
|
|
// TODO use InitializeSimpleLitSurfaceData() in all shader code
|
|
// TODO use InitializeParticleLitSurfaceData() in forward pass for ParticleLitForwardPass.hlsl ? Similar refactoring for ParticleSimpleLitForwardPass.hlsl
|
|
// TODO Make sure GPU buffers are uploaded without copying into Unity CommandBuffer memory
|
|
// TODO BakedLit.shader has a Universal2D pass, but Unlit.shader doesn't have?
|
|
|
|
namespace UnityEngine.Rendering.Universal.Internal
|
|
{
|
|
// Customization per platform.
|
|
static class DeferredConfig
|
|
{
|
|
internal static bool IsOpenGL { get; set; }
|
|
|
|
// DX10 uses SM 4.0. However URP shaders requires SM 4.5 or will use fallback to SM 2.0 shaders otherwise.
|
|
// We will consider deferred renderer is not available when SM 2.0 shaders run.
|
|
internal static bool IsDX10 { get; set; }
|
|
}
|
|
|
|
internal enum LightFlag
|
|
{
|
|
// Keep in sync with kLightFlagSubtractiveMixedLighting.
|
|
SubtractiveMixedLighting = 4
|
|
}
|
|
|
|
// Manages deferred lights.
|
|
internal class DeferredLights
|
|
{
|
|
internal static class ShaderConstants
|
|
{
|
|
public static readonly int _LitStencilRef = Shader.PropertyToID("_LitStencilRef");
|
|
public static readonly int _LitStencilReadMask = Shader.PropertyToID("_LitStencilReadMask");
|
|
public static readonly int _LitStencilWriteMask = Shader.PropertyToID("_LitStencilWriteMask");
|
|
public static readonly int _SimpleLitStencilRef = Shader.PropertyToID("_SimpleLitStencilRef");
|
|
public static readonly int _SimpleLitStencilReadMask = Shader.PropertyToID("_SimpleLitStencilReadMask");
|
|
public static readonly int _SimpleLitStencilWriteMask = Shader.PropertyToID("_SimpleLitStencilWriteMask");
|
|
public static readonly int _StencilRef = Shader.PropertyToID("_StencilRef");
|
|
public static readonly int _StencilReadMask = Shader.PropertyToID("_StencilReadMask");
|
|
public static readonly int _StencilWriteMask = Shader.PropertyToID("_StencilWriteMask");
|
|
public static readonly int _LitPunctualStencilRef = Shader.PropertyToID("_LitPunctualStencilRef");
|
|
public static readonly int _LitPunctualStencilReadMask = Shader.PropertyToID("_LitPunctualStencilReadMask");
|
|
public static readonly int _LitPunctualStencilWriteMask = Shader.PropertyToID("_LitPunctualStencilWriteMask");
|
|
public static readonly int _SimpleLitPunctualStencilRef = Shader.PropertyToID("_SimpleLitPunctualStencilRef");
|
|
public static readonly int _SimpleLitPunctualStencilReadMask = Shader.PropertyToID("_SimpleLitPunctualStencilReadMask");
|
|
public static readonly int _SimpleLitPunctualStencilWriteMask = Shader.PropertyToID("_SimpleLitPunctualStencilWriteMask");
|
|
public static readonly int _LitDirStencilRef = Shader.PropertyToID("_LitDirStencilRef");
|
|
public static readonly int _LitDirStencilReadMask = Shader.PropertyToID("_LitDirStencilReadMask");
|
|
public static readonly int _LitDirStencilWriteMask = Shader.PropertyToID("_LitDirStencilWriteMask");
|
|
public static readonly int _SimpleLitDirStencilRef = Shader.PropertyToID("_SimpleLitDirStencilRef");
|
|
public static readonly int _SimpleLitDirStencilReadMask = Shader.PropertyToID("_SimpleLitDirStencilReadMask");
|
|
public static readonly int _SimpleLitDirStencilWriteMask = Shader.PropertyToID("_SimpleLitDirStencilWriteMask");
|
|
public static readonly int _ClearStencilRef = Shader.PropertyToID("_ClearStencilRef");
|
|
public static readonly int _ClearStencilReadMask = Shader.PropertyToID("_ClearStencilReadMask");
|
|
public static readonly int _ClearStencilWriteMask = Shader.PropertyToID("_ClearStencilWriteMask");
|
|
|
|
public static readonly int _ScreenToWorld = Shader.PropertyToID("_ScreenToWorld");
|
|
|
|
public static int _MainLightPosition = Shader.PropertyToID("_MainLightPosition"); // ForwardLights.LightConstantBuffer also refers to the same ShaderPropertyID - TODO: move this definition to a common location shared by other UniversalRP classes
|
|
public static int _MainLightColor = Shader.PropertyToID("_MainLightColor"); // ForwardLights.LightConstantBuffer also refers to the same ShaderPropertyID - TODO: move this definition to a common location shared by other UniversalRP classes
|
|
public static int _MainLightLayerMask = Shader.PropertyToID("_MainLightLayerMask"); // ForwardLights.LightConstantBuffer also refers to the same ShaderPropertyID - TODO: move this definition to a common location shared by other UniversalRP classes
|
|
public static int _SpotLightScale = Shader.PropertyToID("_SpotLightScale");
|
|
public static int _SpotLightBias = Shader.PropertyToID("_SpotLightBias");
|
|
public static int _SpotLightGuard = Shader.PropertyToID("_SpotLightGuard");
|
|
public static int _LightPosWS = Shader.PropertyToID("_LightPosWS");
|
|
public static int _LightColor = Shader.PropertyToID("_LightColor");
|
|
public static int _LightAttenuation = Shader.PropertyToID("_LightAttenuation");
|
|
public static int _LightOcclusionProbInfo = Shader.PropertyToID("_LightOcclusionProbInfo");
|
|
public static int _LightDirection = Shader.PropertyToID("_LightDirection");
|
|
public static int _LightFlags = Shader.PropertyToID("_LightFlags");
|
|
public static int _ShadowLightIndex = Shader.PropertyToID("_ShadowLightIndex");
|
|
public static int _LightLayerMask = Shader.PropertyToID("_LightLayerMask");
|
|
public static int _CookieLightIndex = Shader.PropertyToID("_CookieLightIndex");
|
|
}
|
|
|
|
internal static readonly string[] k_GBufferNames = new string[]
|
|
{
|
|
"_GBuffer0",
|
|
"_GBuffer1",
|
|
"_GBuffer2",
|
|
"_GBuffer3",
|
|
"_GBuffer4",
|
|
"_GBuffer5",
|
|
"_GBuffer6"
|
|
};
|
|
|
|
internal static readonly int[] k_GBufferShaderPropertyIDs = new int[]
|
|
{
|
|
Shader.PropertyToID(k_GBufferNames[0]),
|
|
Shader.PropertyToID(k_GBufferNames[1]),
|
|
Shader.PropertyToID(k_GBufferNames[2]),
|
|
Shader.PropertyToID(k_GBufferNames[3]),
|
|
Shader.PropertyToID(k_GBufferNames[4]),
|
|
Shader.PropertyToID(k_GBufferNames[5]),
|
|
Shader.PropertyToID(k_GBufferNames[6]),
|
|
};
|
|
|
|
static readonly string[] k_StencilDeferredPassNames = new string[]
|
|
{
|
|
"Stencil Volume",
|
|
"Deferred Punctual Light (Lit)",
|
|
"Deferred Punctual Light (SimpleLit)",
|
|
"Deferred Directional Light (Lit)",
|
|
"Deferred Directional Light (SimpleLit)",
|
|
"ClearStencilPartial",
|
|
"Fog",
|
|
"SSAOOnly"
|
|
};
|
|
|
|
internal enum StencilDeferredPasses
|
|
{
|
|
StencilVolume,
|
|
PunctualLit,
|
|
PunctualSimpleLit,
|
|
DirectionalLit,
|
|
DirectionalSimpleLit,
|
|
ClearStencilPartial,
|
|
Fog,
|
|
SSAOOnly
|
|
};
|
|
|
|
static readonly ushort k_InvalidLightOffset = 0xFFFF;
|
|
static readonly string k_SetupLights = "SetupLights";
|
|
static readonly string k_DeferredPass = "Deferred Pass";
|
|
static readonly string k_DeferredStencilPass = "Deferred Shading (Stencil)";
|
|
static readonly string k_DeferredFogPass = "Deferred Fog";
|
|
static readonly string k_ClearStencilPartial = "Clear Stencil Partial";
|
|
static readonly string k_SetupLightConstants = "Setup Light Constants";
|
|
static readonly float kStencilShapeGuard = 1.06067f; // stencil geometric shapes must be inflated to fit the analytic shapes.
|
|
private static readonly ProfilingSampler m_ProfilingSetupLights = new ProfilingSampler(k_SetupLights);
|
|
private static readonly ProfilingSampler m_ProfilingDeferredPass = new ProfilingSampler(k_DeferredPass);
|
|
private static readonly ProfilingSampler m_ProfilingSetupLightConstants = new ProfilingSampler(k_SetupLightConstants);
|
|
|
|
internal int GBufferAlbedoIndex { get { return 0; } }
|
|
internal int GBufferSpecularMetallicIndex { get { return 1; } }
|
|
internal int GBufferNormalSmoothnessIndex { get { return 2; } }
|
|
internal int GBufferLightingIndex { get { return 3; } }
|
|
internal int GbufferDepthIndex { get { return UseFramebufferFetch ? GBufferLightingIndex + 1 : -1; } }
|
|
internal int GBufferRenderingLayers { get { return UseRenderingLayers ? GBufferLightingIndex + (UseFramebufferFetch ? 1 : 0) + 1 : -1; } }
|
|
// Shadow Mask can change at runtime. Because of this it needs to come after the non-changing buffers.
|
|
internal int GBufferShadowMask { get { return UseShadowMask ? GBufferLightingIndex + (UseFramebufferFetch ? 1 : 0) + (UseRenderingLayers ? 1 : 0) + 1 : -1; } }
|
|
// Color buffer count (not including dephStencil).
|
|
internal int GBufferSliceCount { get { return 4 + (UseFramebufferFetch ? 1 : 0) + (UseShadowMask ? 1 : 0) + (UseRenderingLayers ? 1 : 0); } }
|
|
|
|
internal int GBufferInputAttachmentCount { get { return 4 + (UseShadowMask ? 1 : 0); } }
|
|
|
|
internal GraphicsFormat GetGBufferFormat(int index)
|
|
{
|
|
if (index == GBufferAlbedoIndex) // sRGB albedo, materialFlags
|
|
return QualitySettings.activeColorSpace == ColorSpace.Linear ? GraphicsFormat.R8G8B8A8_SRGB : GraphicsFormat.R8G8B8A8_UNorm;
|
|
else if (index == GBufferSpecularMetallicIndex) // sRGB specular, [unused]
|
|
return GraphicsFormat.R8G8B8A8_UNorm;
|
|
else if (index == GBufferNormalSmoothnessIndex)
|
|
return AccurateGbufferNormals ? GraphicsFormat.R8G8B8A8_UNorm : DepthNormalOnlyPass.GetGraphicsFormat(); // normal normal normal packedSmoothness
|
|
else if (index == GBufferLightingIndex) // Emissive+baked: Most likely B10G11R11_UFloatPack32 or R16G16B16A16_SFloat
|
|
return GraphicsFormat.None;
|
|
else if (index == GbufferDepthIndex) // Render-pass on mobiles: reading back real depth-buffer is either inefficient (Arm Vulkan) or impossible (Metal).
|
|
return GraphicsFormat.R32_SFloat;
|
|
else if (index == GBufferShadowMask) // Optional: shadow mask is outputted in mixed lighting subtractive mode for non-static meshes only
|
|
return GraphicsFormat.B8G8R8A8_UNorm;
|
|
else if (index == GBufferRenderingLayers) // Optional: rendering layers is outputted when light layers are enabled (subset of rendering layers)
|
|
return RenderingLayerUtils.GetFormat(RenderingLayerMaskSize);
|
|
else
|
|
return GraphicsFormat.None;
|
|
}
|
|
|
|
// This may return different values depending on what lights are rendered for a given frame.
|
|
internal bool UseShadowMask { get { return this.MixedLightingSetup != MixedLightingSetup.None; } }
|
|
//
|
|
internal bool UseRenderingLayers { get { return UseLightLayers || UseDecalLayers; } }
|
|
//
|
|
internal RenderingLayerUtils.MaskSize RenderingLayerMaskSize { get; set; }
|
|
//
|
|
internal bool UseDecalLayers { get; set; }
|
|
//
|
|
internal bool UseLightLayers { get { return UniversalRenderPipeline.asset.useRenderingLayers; } }
|
|
//
|
|
internal bool UseFramebufferFetch { get; set; }
|
|
//
|
|
internal bool HasDepthPrepass { get; set; }
|
|
//
|
|
internal bool HasNormalPrepass { get; set; }
|
|
internal bool HasRenderingLayerPrepass { get; set; }
|
|
|
|
// This is an overlay camera being rendered.
|
|
internal bool IsOverlay { get; set; }
|
|
|
|
internal bool AccurateGbufferNormals { get; set; }
|
|
|
|
// We browse all visible lights and found the mixed lighting setup every frame.
|
|
internal MixedLightingSetup MixedLightingSetup { get; set; }
|
|
//
|
|
internal bool UseJobSystem { get; set; }
|
|
//
|
|
internal int RenderWidth { get; set; }
|
|
//
|
|
internal int RenderHeight { get; set; }
|
|
|
|
// Output lighting result.
|
|
internal RTHandle[] GbufferAttachments { get; set; }
|
|
private RTHandle[] GbufferRTHandles;
|
|
internal TextureHandle[] GbufferTextureHandles { get; set; }
|
|
internal RTHandle[] DeferredInputAttachments { get; set; }
|
|
internal bool[] DeferredInputIsTransient { get; set; }
|
|
// Input depth texture, also bound as read-only RT
|
|
internal RTHandle DepthAttachment { get; set; }
|
|
//
|
|
internal RTHandle DepthCopyTexture { get; set; }
|
|
|
|
internal GraphicsFormat[] GbufferFormats { get; set; }
|
|
internal RTHandle DepthAttachmentHandle { get; set; }
|
|
|
|
// Visible lights indices rendered using stencil volumes.
|
|
NativeArray<ushort> m_stencilVisLights;
|
|
// Offset of each type of lights in m_stencilVisLights.
|
|
NativeArray<ushort> m_stencilVisLightOffsets;
|
|
// Needed to access light shadow index (can be null if the pass is not queued).
|
|
AdditionalLightsShadowCasterPass m_AdditionalLightsShadowCasterPass;
|
|
|
|
// For rendering stencil point lights.
|
|
Mesh m_SphereMesh;
|
|
// For rendering stencil spot lights.
|
|
Mesh m_HemisphereMesh;
|
|
// For rendering directional lights.
|
|
Mesh m_FullscreenMesh;
|
|
|
|
// Hold all shaders for stencil-volume deferred shading.
|
|
Material m_StencilDeferredMaterial;
|
|
|
|
// Pass indices.
|
|
int[] m_StencilDeferredPasses;
|
|
|
|
// Avoid memory allocations.
|
|
Matrix4x4[] m_ScreenToWorld = new Matrix4x4[2];
|
|
|
|
ProfilingSampler m_ProfilingSamplerDeferredStencilPass = new ProfilingSampler(k_DeferredStencilPass);
|
|
ProfilingSampler m_ProfilingSamplerDeferredFogPass = new ProfilingSampler(k_DeferredFogPass);
|
|
ProfilingSampler m_ProfilingSamplerClearStencilPartialPass = new ProfilingSampler(k_ClearStencilPartial);
|
|
|
|
private LightCookieManager m_LightCookieManager;
|
|
|
|
internal struct InitParams
|
|
{
|
|
public Material stencilDeferredMaterial;
|
|
|
|
public LightCookieManager lightCookieManager;
|
|
}
|
|
|
|
internal DeferredLights(InitParams initParams, bool useNativeRenderPass = false)
|
|
{
|
|
// Cache result for GL platform here. SystemInfo properties are in C++ land so repeated access will be unecessary penalized.
|
|
// They can also only be called from main thread!
|
|
DeferredConfig.IsOpenGL = SystemInfo.graphicsDeviceType == GraphicsDeviceType.OpenGLCore || SystemInfo.graphicsDeviceType == GraphicsDeviceType.OpenGLES3;
|
|
|
|
// Cachre result for DX10 platform too. Same reasons as above.
|
|
DeferredConfig.IsDX10 = SystemInfo.graphicsDeviceType == GraphicsDeviceType.Direct3D11 && SystemInfo.graphicsShaderLevel <= 40;
|
|
|
|
m_StencilDeferredMaterial = initParams.stencilDeferredMaterial;
|
|
|
|
m_StencilDeferredPasses = new int[k_StencilDeferredPassNames.Length];
|
|
InitStencilDeferredMaterial();
|
|
|
|
this.AccurateGbufferNormals = true;
|
|
this.UseJobSystem = true;
|
|
this.UseFramebufferFetch = useNativeRenderPass;
|
|
m_LightCookieManager = initParams.lightCookieManager;
|
|
}
|
|
|
|
static ProfilingSampler s_SetupDeferredLights = new ProfilingSampler("Setup Deferred lights");
|
|
private class SetupLightPassData
|
|
{
|
|
internal UniversalCameraData cameraData;
|
|
internal UniversalLightData lightData;
|
|
internal DeferredLights deferredLights;
|
|
|
|
// The size of the camera target changes during the frame so we must make a copy of it here to preserve its record-time value.
|
|
internal Vector2Int cameraTargetSizeCopy;
|
|
};
|
|
/// <summary>
|
|
/// Sets up the ForwardLight data for RenderGraph execution
|
|
/// </summary>
|
|
internal void SetupRenderGraphLights(RenderGraph renderGraph, UniversalCameraData cameraData, UniversalLightData lightData)
|
|
{
|
|
using (var builder = renderGraph.AddUnsafePass<SetupLightPassData>(s_SetupDeferredLights.name, out var passData,
|
|
s_SetupDeferredLights))
|
|
{
|
|
passData.cameraData = cameraData;
|
|
passData.cameraTargetSizeCopy = new Vector2Int(cameraData.cameraTargetDescriptor.width, cameraData.cameraTargetDescriptor.height);
|
|
passData.lightData = lightData;
|
|
passData.deferredLights = this;
|
|
|
|
builder.AllowPassCulling(false);
|
|
|
|
builder.SetRenderFunc((SetupLightPassData data, UnsafeGraphContext rgContext) =>
|
|
{
|
|
data.deferredLights.SetupLights(CommandBufferHelpers.GetNativeCommandBuffer(rgContext.cmd), data.cameraData, data.cameraTargetSizeCopy, data.lightData, true);
|
|
});
|
|
}
|
|
}
|
|
|
|
internal void SetupLights(CommandBuffer cmd, UniversalCameraData cameraData, Vector2Int cameraTargetSizeCopy, UniversalLightData lightData, bool isRenderGraph = false)
|
|
{
|
|
Profiler.BeginSample(k_SetupLights);
|
|
|
|
Camera camera = cameraData.camera;
|
|
// Support for dynamic resolution.
|
|
this.RenderWidth = camera.allowDynamicResolution ? Mathf.CeilToInt(ScalableBufferManager.widthScaleFactor * cameraTargetSizeCopy.x) : cameraTargetSizeCopy.x;
|
|
this.RenderHeight = camera.allowDynamicResolution ? Mathf.CeilToInt(ScalableBufferManager.heightScaleFactor * cameraTargetSizeCopy.y) : cameraTargetSizeCopy.y;
|
|
|
|
// inspect lights in lightData.visibleLights and convert them to entries in m_stencilVisLights
|
|
PrecomputeLights(
|
|
out m_stencilVisLights,
|
|
out m_stencilVisLightOffsets,
|
|
ref lightData.visibleLights,
|
|
lightData.additionalLightsCount != 0 || lightData.mainLightIndex >= 0
|
|
);
|
|
|
|
{
|
|
using (new ProfilingScope(cmd, m_ProfilingSetupLightConstants))
|
|
{
|
|
// Shared uniform constants for all lights.
|
|
SetupShaderLightConstants(cmd, lightData);
|
|
|
|
#if UNITY_EDITOR
|
|
// This flag is used to strip mixed lighting shader variants when a player is built.
|
|
// All shader variants are available in the editor.
|
|
bool supportsMixedLighting = true;
|
|
#else
|
|
bool supportsMixedLighting = lightData.supportsMixedLighting;
|
|
#endif
|
|
|
|
// Setup global keywords.
|
|
cmd.SetKeyword(ShaderGlobalKeywords._GBUFFER_NORMALS_OCT, this.AccurateGbufferNormals);
|
|
bool isShadowMask = supportsMixedLighting && this.MixedLightingSetup == MixedLightingSetup.ShadowMask;
|
|
bool isShadowMaskAlways = isShadowMask && QualitySettings.shadowmaskMode == ShadowmaskMode.Shadowmask;
|
|
bool isSubtractive = supportsMixedLighting && this.MixedLightingSetup == MixedLightingSetup.Subtractive;
|
|
cmd.SetKeyword(ShaderGlobalKeywords.LightmapShadowMixing, isSubtractive || isShadowMaskAlways);
|
|
cmd.SetKeyword(ShaderGlobalKeywords.ShadowsShadowMask, isShadowMask);
|
|
cmd.SetKeyword(ShaderGlobalKeywords.MixedLightingSubtractive, isSubtractive); // Backward compatibility
|
|
// This should be moved to a more global scope when framebuffer fetch is introduced to more passes
|
|
cmd.SetKeyword(ShaderGlobalKeywords.RenderPassEnabled, this.UseFramebufferFetch && (cameraData.cameraType == CameraType.Game || camera.cameraType == CameraType.SceneView || isRenderGraph));
|
|
cmd.SetKeyword(ShaderGlobalKeywords.LightLayers, UseLightLayers && !CoreUtils.IsSceneLightingDisabled(camera));
|
|
|
|
RenderingLayerUtils.SetupProperties(cmd, RenderingLayerMaskSize);
|
|
}
|
|
}
|
|
|
|
Profiler.EndSample();
|
|
}
|
|
|
|
internal void ResolveMixedLightingMode(UniversalLightData lightData)
|
|
{
|
|
// Find the mixed lighting mode. This is the same logic as ForwardLights.
|
|
this.MixedLightingSetup = MixedLightingSetup.None;
|
|
|
|
#if !UNITY_EDITOR
|
|
// This flag is used to strip mixed lighting shader variants when a player is built.
|
|
// All shader variants are available in the editor.
|
|
if (lightData.supportsMixedLighting)
|
|
#endif
|
|
{
|
|
NativeArray<VisibleLight> visibleLights = lightData.visibleLights;
|
|
for (int lightIndex = 0; lightIndex < lightData.visibleLights.Length && this.MixedLightingSetup == MixedLightingSetup.None; ++lightIndex)
|
|
{
|
|
Light light = visibleLights.UnsafeElementAtMutable(lightIndex).light;
|
|
|
|
if (light != null
|
|
&& light.bakingOutput.lightmapBakeType == LightmapBakeType.Mixed
|
|
&& light.shadows != LightShadows.None)
|
|
{
|
|
switch (light.bakingOutput.mixedLightingMode)
|
|
{
|
|
case MixedLightingMode.Subtractive:
|
|
this.MixedLightingSetup = MixedLightingSetup.Subtractive;
|
|
break;
|
|
case MixedLightingMode.Shadowmask:
|
|
this.MixedLightingSetup = MixedLightingSetup.ShadowMask;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Once the mixed lighting mode has been discovered, we know how many MRTs we need for the gbuffer.
|
|
// Subtractive mixed lighting requires shadowMask output, which is actually used to store unity_ProbesOcclusion values.
|
|
|
|
CreateGbufferResources();
|
|
}
|
|
|
|
// In cases when custom pass is injected between GBuffer and Deferred passes we need to fallback
|
|
// To non-renderpass path in the middle of setup, which means recreating the gbuffer attachments as well due to GBuffer4 used for RenderPass
|
|
internal void DisableFramebufferFetchInput()
|
|
{
|
|
this.UseFramebufferFetch = false;
|
|
CreateGbufferResources();
|
|
}
|
|
|
|
internal void ReleaseGbufferResources()
|
|
{
|
|
if (this.GbufferRTHandles != null)
|
|
{
|
|
// Release the old handles before creating the new one
|
|
for (int i = 0; i < this.GbufferRTHandles.Length; ++i)
|
|
{
|
|
if (i == GBufferLightingIndex) // Not on GBuffer to release
|
|
continue;
|
|
this.GbufferRTHandles[i].Release();
|
|
this.GbufferAttachments[i].Release();
|
|
}
|
|
}
|
|
}
|
|
|
|
internal void ReAllocateGBufferIfNeeded(RenderTextureDescriptor gbufferSlice, int gbufferIndex)
|
|
{
|
|
if (this.GbufferRTHandles != null)
|
|
{
|
|
// In case DeferredLight does not own the RTHandle, we can skip realloc.
|
|
if (this.GbufferRTHandles[gbufferIndex].GetInstanceID() != this.GbufferAttachments[gbufferIndex].GetInstanceID())
|
|
return;
|
|
|
|
gbufferSlice.depthStencilFormat = GraphicsFormat.None; // make sure no depth surface is actually created
|
|
gbufferSlice.stencilFormat = GraphicsFormat.None;
|
|
gbufferSlice.graphicsFormat = GetGBufferFormat(gbufferIndex);
|
|
RenderingUtils.ReAllocateHandleIfNeeded(ref GbufferRTHandles[gbufferIndex], gbufferSlice, FilterMode.Point, TextureWrapMode.Clamp, name: k_GBufferNames[gbufferIndex]);
|
|
GbufferAttachments[gbufferIndex] = GbufferRTHandles[gbufferIndex];
|
|
}
|
|
}
|
|
|
|
internal void CreateGbufferResources()
|
|
{
|
|
int gbufferSliceCount = this.GBufferSliceCount;
|
|
if (this.GbufferRTHandles == null || this.GbufferRTHandles.Length != gbufferSliceCount)
|
|
{
|
|
ReleaseGbufferResources();
|
|
|
|
this.GbufferAttachments = new RTHandle[gbufferSliceCount];
|
|
this.GbufferRTHandles = new RTHandle[gbufferSliceCount];
|
|
this.GbufferFormats = new GraphicsFormat[gbufferSliceCount];
|
|
this.GbufferTextureHandles = new TextureHandle[gbufferSliceCount];
|
|
for (int i = 0; i < gbufferSliceCount; ++i)
|
|
{
|
|
this.GbufferRTHandles[i] = RTHandles.Alloc(k_GBufferNames[i], name: k_GBufferNames[i]);
|
|
this.GbufferAttachments[i] = this.GbufferRTHandles[i];
|
|
this.GbufferFormats[i] = this.GetGBufferFormat(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
internal void UpdateDeferredInputAttachments()
|
|
{
|
|
this.DeferredInputAttachments[0] = this.GbufferAttachments[0];
|
|
this.DeferredInputAttachments[1] = this.GbufferAttachments[1];
|
|
this.DeferredInputAttachments[2] = this.GbufferAttachments[2];
|
|
this.DeferredInputAttachments[3] = this.GbufferAttachments[4];
|
|
|
|
if (UseShadowMask && UseRenderingLayers)
|
|
{
|
|
this.DeferredInputAttachments[4] = this.GbufferAttachments[GBufferShadowMask];
|
|
this.DeferredInputAttachments[5] = this.GbufferAttachments[GBufferRenderingLayers];
|
|
}
|
|
else if (UseShadowMask)
|
|
{
|
|
this.DeferredInputAttachments[4] = this.GbufferAttachments[GBufferShadowMask];
|
|
}
|
|
else if (UseRenderingLayers)
|
|
{
|
|
this.DeferredInputAttachments[4] = this.GbufferAttachments[GBufferRenderingLayers];
|
|
}
|
|
}
|
|
|
|
|
|
internal bool IsRuntimeSupportedThisFrame()
|
|
{
|
|
// GBuffer slice count can change depending actual geometry/light being rendered.
|
|
// For instance, we only bind shadowMask RT if the scene supports mix lighting and at least one visible light has subtractive mixed ligting mode.
|
|
return this.GBufferSliceCount <= SystemInfo.supportedRenderTargetCount && !DeferredConfig.IsOpenGL && !DeferredConfig.IsDX10;
|
|
}
|
|
|
|
public void Setup(
|
|
AdditionalLightsShadowCasterPass additionalLightsShadowCasterPass,
|
|
bool hasDepthPrepass,
|
|
bool hasNormalPrepass,
|
|
bool hasRenderingLayerPrepass,
|
|
RTHandle depthCopyTexture,
|
|
RTHandle depthAttachment,
|
|
RTHandle colorAttachment)
|
|
{
|
|
m_AdditionalLightsShadowCasterPass = additionalLightsShadowCasterPass;
|
|
this.HasDepthPrepass = hasDepthPrepass;
|
|
this.HasNormalPrepass = hasNormalPrepass;
|
|
this.HasRenderingLayerPrepass = hasRenderingLayerPrepass;
|
|
|
|
this.DepthCopyTexture = depthCopyTexture;
|
|
|
|
this.GbufferAttachments[this.GBufferLightingIndex] = colorAttachment;
|
|
this.DepthAttachment = depthAttachment;
|
|
|
|
var inputCount = 4 + (UseShadowMask ? 1 : 0) + (UseRenderingLayers ? 1 : 0);
|
|
if (this.DeferredInputAttachments == null && this.UseFramebufferFetch && this.GbufferAttachments.Length >= 3 ||
|
|
(this.DeferredInputAttachments != null && inputCount != this.DeferredInputAttachments.Length))
|
|
{
|
|
this.DeferredInputAttachments = new RTHandle[inputCount];
|
|
this.DeferredInputIsTransient = new bool[inputCount];
|
|
int i, j = 0;
|
|
for (i = 0; i < inputCount; i++, j++)
|
|
{
|
|
if (j == GBufferLightingIndex)
|
|
j++;
|
|
DeferredInputAttachments[i] = GbufferAttachments[j];
|
|
DeferredInputIsTransient[i] = j != GbufferDepthIndex;
|
|
}
|
|
}
|
|
this.DepthAttachmentHandle = this.DepthAttachment;
|
|
}
|
|
|
|
// Only used by RenderGraph now as the other Setup call requires providing target handles which isn't working on RG
|
|
internal void Setup(AdditionalLightsShadowCasterPass additionalLightsShadowCasterPass)
|
|
{
|
|
m_AdditionalLightsShadowCasterPass = additionalLightsShadowCasterPass;
|
|
}
|
|
|
|
public void OnCameraCleanup(CommandBuffer cmd)
|
|
{
|
|
// Disable any global keywords setup in SetupLights().
|
|
cmd.SetKeyword(ShaderGlobalKeywords._GBUFFER_NORMALS_OCT, false);
|
|
|
|
if (m_stencilVisLights.IsCreated)
|
|
m_stencilVisLights.Dispose();
|
|
if (m_stencilVisLightOffsets.IsCreated)
|
|
m_stencilVisLightOffsets.Dispose();
|
|
}
|
|
|
|
internal static StencilState OverwriteStencil(StencilState s, int stencilWriteMask)
|
|
{
|
|
if (!s.enabled)
|
|
{
|
|
return new StencilState(
|
|
true,
|
|
0, (byte)stencilWriteMask,
|
|
CompareFunction.Always, StencilOp.Replace, StencilOp.Keep, StencilOp.Keep,
|
|
CompareFunction.Always, StencilOp.Replace, StencilOp.Keep, StencilOp.Keep
|
|
);
|
|
}
|
|
|
|
CompareFunction funcFront = s.compareFunctionFront != CompareFunction.Disabled ? s.compareFunctionFront : CompareFunction.Always;
|
|
CompareFunction funcBack = s.compareFunctionBack != CompareFunction.Disabled ? s.compareFunctionBack : CompareFunction.Always;
|
|
StencilOp passFront = s.passOperationFront;
|
|
StencilOp failFront = s.failOperationFront;
|
|
StencilOp zfailFront = s.zFailOperationFront;
|
|
StencilOp passBack = s.passOperationBack;
|
|
StencilOp failBack = s.failOperationBack;
|
|
StencilOp zfailBack = s.zFailOperationBack;
|
|
|
|
return new StencilState(
|
|
true,
|
|
(byte)(s.readMask & 0x0F), (byte)(s.writeMask | stencilWriteMask),
|
|
funcFront, passFront, failFront, zfailFront,
|
|
funcBack, passBack, failBack, zfailBack
|
|
);
|
|
}
|
|
|
|
internal static RenderStateBlock OverwriteStencil(RenderStateBlock block, int stencilWriteMask, int stencilRef)
|
|
{
|
|
if (!block.stencilState.enabled)
|
|
{
|
|
block.stencilState = new StencilState(
|
|
true,
|
|
0, (byte)stencilWriteMask,
|
|
CompareFunction.Always, StencilOp.Replace, StencilOp.Keep, StencilOp.Keep,
|
|
CompareFunction.Always, StencilOp.Replace, StencilOp.Keep, StencilOp.Keep
|
|
);
|
|
}
|
|
else
|
|
{
|
|
StencilState s = block.stencilState;
|
|
CompareFunction funcFront = s.compareFunctionFront != CompareFunction.Disabled ? s.compareFunctionFront : CompareFunction.Always;
|
|
CompareFunction funcBack = s.compareFunctionBack != CompareFunction.Disabled ? s.compareFunctionBack : CompareFunction.Always;
|
|
StencilOp passFront = s.passOperationFront;
|
|
StencilOp failFront = s.failOperationFront;
|
|
StencilOp zfailFront = s.zFailOperationFront;
|
|
StencilOp passBack = s.passOperationBack;
|
|
StencilOp failBack = s.failOperationBack;
|
|
StencilOp zfailBack = s.zFailOperationBack;
|
|
|
|
block.stencilState = new StencilState(
|
|
true,
|
|
(byte)(s.readMask & 0x0F), (byte)(s.writeMask | stencilWriteMask),
|
|
funcFront, passFront, failFront, zfailFront,
|
|
funcBack, passBack, failBack, zfailBack
|
|
);
|
|
}
|
|
|
|
block.mask |= RenderStateMask.Stencil;
|
|
block.stencilReference = (block.stencilReference & (int)StencilUsage.UserMask) | stencilRef;
|
|
|
|
return block;
|
|
}
|
|
|
|
internal void ClearStencilPartial(RasterCommandBuffer cmd)
|
|
{
|
|
if (m_FullscreenMesh == null)
|
|
m_FullscreenMesh = CreateFullscreenMesh();
|
|
|
|
using (new ProfilingScope(cmd, m_ProfilingSamplerClearStencilPartialPass))
|
|
{
|
|
cmd.DrawMesh(m_FullscreenMesh, Matrix4x4.identity, m_StencilDeferredMaterial, 0, m_StencilDeferredPasses[(int)StencilDeferredPasses.ClearStencilPartial]);
|
|
}
|
|
}
|
|
|
|
internal void ExecuteDeferredPass(RasterCommandBuffer cmd, UniversalCameraData cameraData, UniversalLightData lightData, UniversalShadowData shadowData)
|
|
{
|
|
// Workaround for bug.
|
|
// When changing the URP asset settings (ex: shadow cascade resolution), all ScriptableRenderers are recreated but
|
|
// materials passed in have not finished initializing at that point if they have fallback shader defined. In particular deferred shaders only have 1 pass available,
|
|
// which prevents from resolving correct pass indices.
|
|
if (m_StencilDeferredPasses[0] < 0)
|
|
InitStencilDeferredMaterial();
|
|
|
|
if (!UseFramebufferFetch)
|
|
{
|
|
for (int i = 0; i < GbufferTextureHandles.Length; i++)
|
|
{
|
|
if (i != GBufferLightingIndex)
|
|
m_StencilDeferredMaterial.SetTexture(k_GBufferShaderPropertyIDs[i], GbufferTextureHandles[i]);
|
|
}
|
|
}
|
|
|
|
using (new ProfilingScope(cmd, m_ProfilingDeferredPass))
|
|
{
|
|
// This does 2 things:
|
|
// - baked geometry are skipped (do not receive dynamic lighting)
|
|
// - non-baked geometry (== non-static geometry) use shadowMask/occlusionProbes to emulate baked shadows influences.
|
|
cmd.SetKeyword(ShaderGlobalKeywords._DEFERRED_MIXED_LIGHTING, this.UseShadowMask);
|
|
|
|
// This must be set for each eye in XR mode multipass.
|
|
SetupMatrixConstants(cmd, cameraData);
|
|
|
|
// First directional light will apply SSAO if possible, unless there is none.
|
|
if (!HasStencilLightsOfType(LightType.Directional))
|
|
RenderSSAOBeforeShading(cmd);
|
|
|
|
RenderStencilLights(cmd, lightData, shadowData, cameraData.renderer.stripShadowsOffVariants);
|
|
|
|
cmd.SetKeyword(ShaderGlobalKeywords._DEFERRED_MIXED_LIGHTING, false);
|
|
|
|
// Legacy fog (Windows -> Rendering -> Lighting Settings -> Fog)
|
|
RenderFog(cmd, cameraData.camera.orthographic);
|
|
}
|
|
|
|
// Restore shader keywords
|
|
cmd.SetKeyword(ShaderGlobalKeywords.AdditionalLightShadows, shadowData.isKeywordAdditionalLightShadowsEnabled);
|
|
ShadowUtils.SetSoftShadowQualityShaderKeywords(cmd, shadowData);
|
|
cmd.SetKeyword(ShaderGlobalKeywords.LightCookies, m_LightCookieManager != null && m_LightCookieManager.IsKeywordLightCookieEnabled);
|
|
}
|
|
|
|
// adapted from ForwardLights.SetupShaderLightConstants
|
|
void SetupShaderLightConstants(CommandBuffer cmd, UniversalLightData lightData)
|
|
{
|
|
// Main light has an optimized shader path for main light. This will benefit games that only care about a single light.
|
|
// Universal Forward pipeline only supports a single shadow light, if available it will be the main light.
|
|
SetupMainLightConstants(cmd, lightData);
|
|
}
|
|
|
|
// adapted from ForwardLights.SetupShaderLightConstants
|
|
void SetupMainLightConstants(CommandBuffer cmd, UniversalLightData lightData)
|
|
{
|
|
if (lightData.mainLightIndex < 0)
|
|
return;
|
|
|
|
Vector4 lightPos, lightColor, lightAttenuation, lightSpotDir, lightOcclusionChannel;
|
|
UniversalRenderPipeline.InitializeLightConstants_Common(lightData.visibleLights, lightData.mainLightIndex, out lightPos, out lightColor, out lightAttenuation, out lightSpotDir, out lightOcclusionChannel);
|
|
|
|
if (lightData.supportsLightLayers)
|
|
{
|
|
Light light = lightData.visibleLights[lightData.mainLightIndex].light;
|
|
SetRenderingLayersMask(CommandBufferHelpers.GetRasterCommandBuffer(cmd), light, ShaderConstants._MainLightLayerMask);
|
|
}
|
|
|
|
cmd.SetGlobalVector(ShaderConstants._MainLightPosition, lightPos);
|
|
cmd.SetGlobalVector(ShaderConstants._MainLightColor, lightColor);
|
|
}
|
|
|
|
void SetupMatrixConstants(RasterCommandBuffer cmd, UniversalCameraData cameraData)
|
|
{
|
|
#if ENABLE_VR && ENABLE_XR_MODULE
|
|
int eyeCount = cameraData.xr.enabled && cameraData.xr.singlePassEnabled ? 2 : 1;
|
|
#else
|
|
int eyeCount = 1;
|
|
#endif
|
|
Matrix4x4[] screenToWorld = m_ScreenToWorld; // deferred shaders expects 2 elements
|
|
|
|
for (int eyeIndex = 0; eyeIndex < eyeCount; eyeIndex++)
|
|
{
|
|
Matrix4x4 proj = cameraData.GetProjectionMatrix(eyeIndex);
|
|
Matrix4x4 view = cameraData.GetViewMatrix(eyeIndex);
|
|
Matrix4x4 gpuProj = GL.GetGPUProjectionMatrix(proj, false);
|
|
|
|
// xy coordinates in range [-1; 1] go to pixel coordinates.
|
|
Matrix4x4 toScreen = new Matrix4x4(
|
|
new Vector4(0.5f * this.RenderWidth, 0.0f, 0.0f, 0.0f),
|
|
new Vector4(0.0f, 0.5f * this.RenderHeight, 0.0f, 0.0f),
|
|
new Vector4(0.0f, 0.0f, 1.0f, 0.0f),
|
|
new Vector4(0.5f * this.RenderWidth, 0.5f * this.RenderHeight, 0.0f, 1.0f)
|
|
);
|
|
|
|
Matrix4x4 zScaleBias = Matrix4x4.identity;
|
|
if (DeferredConfig.IsOpenGL)
|
|
{
|
|
// We need to manunally adjust z in NDC space from [-1; 1] to [0; 1] (storage in depth texture).
|
|
zScaleBias = new Matrix4x4(
|
|
new Vector4(1.0f, 0.0f, 0.0f, 0.0f),
|
|
new Vector4(0.0f, 1.0f, 0.0f, 0.0f),
|
|
new Vector4(0.0f, 0.0f, 0.5f, 0.0f),
|
|
new Vector4(0.0f, 0.0f, 0.5f, 1.0f)
|
|
);
|
|
}
|
|
|
|
screenToWorld[eyeIndex] = Matrix4x4.Inverse(toScreen * zScaleBias * gpuProj * view);
|
|
}
|
|
|
|
cmd.SetGlobalMatrixArray(ShaderConstants._ScreenToWorld, screenToWorld);
|
|
}
|
|
|
|
void PrecomputeLights(
|
|
out NativeArray<ushort> stencilVisLights,
|
|
out NativeArray<ushort> stencilVisLightOffsets,
|
|
ref NativeArray<VisibleLight> visibleLights,
|
|
bool hasAdditionalLights)
|
|
{
|
|
const int lightTypeCount = (int)LightType.Tube + 1;
|
|
|
|
if (!hasAdditionalLights)
|
|
{
|
|
stencilVisLights = new NativeArray<ushort>(0, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
|
|
stencilVisLightOffsets = new NativeArray<ushort>(lightTypeCount, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
|
|
for (int i = 0; i < lightTypeCount; ++i)
|
|
stencilVisLightOffsets[i] = k_InvalidLightOffset;
|
|
return;
|
|
}
|
|
|
|
NativeArray<int> stencilLightCounts = new NativeArray<int>(lightTypeCount, Allocator.Temp, NativeArrayOptions.ClearMemory);
|
|
stencilVisLightOffsets = new NativeArray<ushort>(lightTypeCount, Allocator.Temp, NativeArrayOptions.ClearMemory);
|
|
|
|
// Count the number of lights per type.
|
|
int visibleLightCount = visibleLights.Length;
|
|
for (ushort visLightIndex = 0; visLightIndex < visibleLightCount; ++visLightIndex)
|
|
{
|
|
ref VisibleLight vl = ref visibleLights.UnsafeElementAtMutable(visLightIndex);
|
|
++stencilVisLightOffsets[(int)vl.lightType];
|
|
}
|
|
|
|
int totalStencilLightCount = stencilVisLightOffsets[(int)LightType.Spot] + stencilVisLightOffsets[(int)LightType.Directional] + stencilVisLightOffsets[(int)LightType.Point];
|
|
stencilVisLights = new NativeArray<ushort>(totalStencilLightCount, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
|
|
|
|
for (int i = 0, soffset = 0; i < stencilVisLightOffsets.Length; ++i)
|
|
{
|
|
if (stencilVisLightOffsets[i] == 0)
|
|
stencilVisLightOffsets[i] = k_InvalidLightOffset;
|
|
else
|
|
{
|
|
int c = stencilVisLightOffsets[i];
|
|
stencilVisLightOffsets[i] = (ushort)soffset;
|
|
soffset += c;
|
|
}
|
|
}
|
|
|
|
for (ushort visLightIndex = 0; visLightIndex < visibleLightCount; ++visLightIndex)
|
|
{
|
|
ref VisibleLight vl = ref visibleLights.UnsafeElementAtMutable(visLightIndex);
|
|
if (vl.lightType != LightType.Spot &&
|
|
vl.lightType != LightType.Directional &&
|
|
vl.lightType != LightType.Point)
|
|
{
|
|
// The light type is not supported. Skip the light.
|
|
continue;
|
|
}
|
|
|
|
int i = stencilLightCounts[(int) vl.lightType]++;
|
|
stencilVisLights[stencilVisLightOffsets[(int) vl.lightType] + i] = visLightIndex;
|
|
}
|
|
stencilLightCounts.Dispose();
|
|
}
|
|
|
|
bool HasStencilLightsOfType(LightType type)
|
|
{
|
|
return m_stencilVisLightOffsets[(int)type] != k_InvalidLightOffset;
|
|
}
|
|
|
|
void RenderStencilLights(RasterCommandBuffer cmd, UniversalLightData lightData, UniversalShadowData shadowData, bool stripShadowsOffVariants)
|
|
{
|
|
if (m_stencilVisLights.Length == 0)
|
|
return;
|
|
|
|
if (m_StencilDeferredMaterial == null)
|
|
{
|
|
Debug.LogErrorFormat("Missing {0}. {1} render pass will not execute. Check for missing reference in the renderer resources.", m_StencilDeferredMaterial, GetType().Name);
|
|
return;
|
|
}
|
|
|
|
Profiler.BeginSample(k_DeferredStencilPass);
|
|
|
|
using (new ProfilingScope(cmd, m_ProfilingSamplerDeferredStencilPass))
|
|
{
|
|
NativeArray<VisibleLight> visibleLights = lightData.visibleLights;
|
|
bool hasLightCookieManager = m_LightCookieManager != null;
|
|
bool hasAdditionalLightPass = m_AdditionalLightsShadowCasterPass != null;
|
|
|
|
if (HasStencilLightsOfType(LightType.Directional))
|
|
RenderStencilDirectionalLights(cmd, stripShadowsOffVariants, lightData, shadowData, visibleLights, hasAdditionalLightPass, hasLightCookieManager, lightData.mainLightIndex);
|
|
|
|
if (lightData.supportsAdditionalLights)
|
|
{
|
|
if (HasStencilLightsOfType(LightType.Point))
|
|
RenderStencilPointLights(cmd, stripShadowsOffVariants, lightData, shadowData, visibleLights, hasAdditionalLightPass, hasLightCookieManager);
|
|
|
|
if (HasStencilLightsOfType(LightType.Spot))
|
|
RenderStencilSpotLights(cmd, stripShadowsOffVariants, lightData, shadowData, visibleLights, hasAdditionalLightPass, hasLightCookieManager);
|
|
}
|
|
}
|
|
|
|
Profiler.EndSample();
|
|
}
|
|
|
|
void RenderStencilDirectionalLights(RasterCommandBuffer cmd, bool stripShadowsOffVariants, UniversalLightData lightData, UniversalShadowData shadowData, NativeArray<VisibleLight> visibleLights, bool hasAdditionalLightPass, bool hasLightCookieManager, int mainLightIndex)
|
|
{
|
|
if (m_FullscreenMesh == null)
|
|
m_FullscreenMesh = CreateFullscreenMesh();
|
|
|
|
cmd.SetKeyword(ShaderGlobalKeywords._DIRECTIONAL, true);
|
|
|
|
// TODO bundle extra directional lights rendering by batches of 8.
|
|
// Also separate shadow caster lights from non-shadow caster.
|
|
int lastLightCookieIndex = -1;
|
|
bool isFirstLight = true;
|
|
bool lastLightCookieKeywordState = false;
|
|
bool lastShadowsKeywordState = false;
|
|
bool lastSoftShadowsKeywordState = false;
|
|
for (int soffset = m_stencilVisLightOffsets[(int)LightType.Directional]; soffset < m_stencilVisLights.Length; ++soffset)
|
|
{
|
|
ushort visLightIndex = m_stencilVisLights[soffset];
|
|
ref VisibleLight vl = ref visibleLights.UnsafeElementAtMutable(visLightIndex);
|
|
if (vl.lightType != LightType.Directional)
|
|
break;
|
|
|
|
// Avoid light find on every access.
|
|
Light light = vl.light;
|
|
|
|
Vector4 lightDir, lightColor, lightAttenuation, lightSpotDir, lightOcclusionChannel;
|
|
UniversalRenderPipeline.InitializeLightConstants_Common(visibleLights, visLightIndex, out lightDir, out lightColor, out lightAttenuation, out lightSpotDir, out lightOcclusionChannel);
|
|
|
|
int lightFlags = 0;
|
|
if (light.bakingOutput.lightmapBakeType == LightmapBakeType.Mixed)
|
|
lightFlags |= (int)LightFlag.SubtractiveMixedLighting;
|
|
|
|
if (lightData.supportsLightLayers)
|
|
SetRenderingLayersMask(cmd, light, ShaderConstants._LightLayerMask);
|
|
|
|
// Setup shadow parameters:
|
|
// - for the main light, they have already been setup globally, so nothing to do.
|
|
// - for other directional lights, it is actually not supported by URP, but the code would look like this.
|
|
bool hasDeferredShadows = light && light.shadows != LightShadows.None;
|
|
bool isMainLight = visLightIndex == mainLightIndex;
|
|
if (!isMainLight)
|
|
{
|
|
int shadowLightIndex = hasAdditionalLightPass ? m_AdditionalLightsShadowCasterPass.GetShadowLightIndexFromLightIndex(visLightIndex) : -1;
|
|
hasDeferredShadows = light && light.shadows != LightShadows.None && shadowLightIndex >= 0;
|
|
cmd.SetGlobalInt(ShaderConstants._ShadowLightIndex, shadowLightIndex);
|
|
SetLightCookiesKeyword(cmd, visLightIndex, hasLightCookieManager, isFirstLight, ref lastLightCookieKeywordState, ref lastLightCookieIndex);
|
|
}
|
|
|
|
// Update keywords states
|
|
SetAdditionalLightsShadowsKeyword(ref cmd, stripShadowsOffVariants, shadowData.additionalLightShadowsEnabled, hasDeferredShadows, isFirstLight, ref lastShadowsKeywordState);
|
|
SetSoftShadowsKeyword(cmd, shadowData, light, hasDeferredShadows, isFirstLight, ref lastSoftShadowsKeywordState);
|
|
cmd.SetKeyword(ShaderGlobalKeywords._DEFERRED_FIRST_LIGHT, isFirstLight); // First directional light applies SSAO
|
|
cmd.SetKeyword(ShaderGlobalKeywords._DEFERRED_MAIN_LIGHT, isMainLight); // main directional light use different uniform constants from additional directional lights
|
|
|
|
// Update Global properties
|
|
cmd.SetGlobalVector(ShaderConstants._LightColor, lightColor); // VisibleLight.finalColor already returns color in active color space
|
|
cmd.SetGlobalVector(ShaderConstants._LightDirection, lightDir);
|
|
cmd.SetGlobalInt(ShaderConstants._LightFlags, lightFlags);
|
|
|
|
// Lighting pass.
|
|
cmd.DrawMesh(m_FullscreenMesh, Matrix4x4.identity, m_StencilDeferredMaterial, 0, m_StencilDeferredPasses[(int)StencilDeferredPasses.DirectionalLit]);
|
|
cmd.DrawMesh(m_FullscreenMesh, Matrix4x4.identity, m_StencilDeferredMaterial, 0, m_StencilDeferredPasses[(int)StencilDeferredPasses.DirectionalSimpleLit]);
|
|
|
|
isFirstLight = false;
|
|
}
|
|
|
|
cmd.SetKeyword(ShaderGlobalKeywords._DIRECTIONAL, false);
|
|
}
|
|
|
|
void RenderStencilPointLights(RasterCommandBuffer cmd, bool stripShadowsOffVariants, UniversalLightData lightData, UniversalShadowData shadowData, NativeArray<VisibleLight> visibleLights, bool hasAdditionalLightPass, bool hasLightCookieManager)
|
|
{
|
|
if (m_SphereMesh == null)
|
|
m_SphereMesh = CreateSphereMesh();
|
|
|
|
cmd.SetKeyword(ShaderGlobalKeywords._POINT, true);
|
|
|
|
int lastLightCookieIndex = -1;
|
|
bool isFirstLight = true;
|
|
bool lastLightCookieKeywordState = false;
|
|
bool lastShadowsKeywordState = false;
|
|
bool lastSoftShadowsKeywordState = false;
|
|
for (int soffset = m_stencilVisLightOffsets[(int)LightType.Point]; soffset < m_stencilVisLights.Length; ++soffset)
|
|
{
|
|
ushort visLightIndex = m_stencilVisLights[soffset];
|
|
ref VisibleLight vl = ref visibleLights.UnsafeElementAtMutable(visLightIndex);
|
|
if (vl.lightType != LightType.Point)
|
|
break;
|
|
|
|
// Avoid light find on every access.
|
|
Light light = vl.light;
|
|
|
|
Vector3 posWS = vl.localToWorldMatrix.GetColumn(3);
|
|
Matrix4x4 transformMatrix = new Matrix4x4(
|
|
new Vector4(vl.range, 0.0f, 0.0f, 0.0f),
|
|
new Vector4(0.0f, vl.range, 0.0f, 0.0f),
|
|
new Vector4(0.0f, 0.0f, vl.range, 0.0f),
|
|
new Vector4(posWS.x, posWS.y, posWS.z, 1.0f)
|
|
);
|
|
|
|
Vector4 lightPos, lightColor, lightAttenuation, lightOcclusionChannel;
|
|
UniversalRenderPipeline.InitializeLightConstants_Common(visibleLights, visLightIndex, out lightPos, out lightColor, out lightAttenuation, out _, out lightOcclusionChannel);
|
|
|
|
if (lightData.supportsLightLayers)
|
|
SetRenderingLayersMask(cmd, light, ShaderConstants._LightLayerMask);
|
|
|
|
int lightFlags = 0;
|
|
if (light.bakingOutput.lightmapBakeType == LightmapBakeType.Mixed)
|
|
lightFlags |= (int)LightFlag.SubtractiveMixedLighting;
|
|
|
|
// Determine whether the light is casting shadows and what the index it should use.
|
|
int shadowLightIndex = hasAdditionalLightPass ? m_AdditionalLightsShadowCasterPass.GetShadowLightIndexFromLightIndex(visLightIndex) : -1;
|
|
bool hasDeferredShadows = light && light.shadows != LightShadows.None && shadowLightIndex >= 0;
|
|
|
|
// Update keywords states
|
|
SetAdditionalLightsShadowsKeyword(ref cmd, stripShadowsOffVariants, shadowData.additionalLightShadowsEnabled, hasDeferredShadows, isFirstLight, ref lastShadowsKeywordState);
|
|
SetSoftShadowsKeyword(cmd, shadowData, light, hasDeferredShadows, isFirstLight, ref lastSoftShadowsKeywordState);
|
|
SetLightCookiesKeyword(cmd, visLightIndex, hasLightCookieManager, isFirstLight, ref lastLightCookieKeywordState, ref lastLightCookieIndex);
|
|
|
|
// Update Global properties
|
|
cmd.SetGlobalVector(ShaderConstants._LightPosWS, lightPos);
|
|
cmd.SetGlobalVector(ShaderConstants._LightColor, lightColor);
|
|
cmd.SetGlobalVector(ShaderConstants._LightAttenuation, lightAttenuation);
|
|
cmd.SetGlobalVector(ShaderConstants._LightOcclusionProbInfo, lightOcclusionChannel);
|
|
cmd.SetGlobalInt(ShaderConstants._LightFlags, lightFlags);
|
|
cmd.SetGlobalInt(ShaderConstants._ShadowLightIndex, shadowLightIndex);
|
|
|
|
// Stencil pass.
|
|
cmd.DrawMesh(m_SphereMesh, transformMatrix, m_StencilDeferredMaterial, 0, m_StencilDeferredPasses[(int)StencilDeferredPasses.StencilVolume]);
|
|
|
|
// Lighting pass.
|
|
cmd.DrawMesh(m_SphereMesh, transformMatrix, m_StencilDeferredMaterial, 0, m_StencilDeferredPasses[(int)StencilDeferredPasses.PunctualLit]);
|
|
cmd.DrawMesh(m_SphereMesh, transformMatrix, m_StencilDeferredMaterial, 0, m_StencilDeferredPasses[(int)StencilDeferredPasses.PunctualSimpleLit]);
|
|
|
|
isFirstLight = false;
|
|
}
|
|
|
|
cmd.SetKeyword(ShaderGlobalKeywords._POINT, false);
|
|
}
|
|
|
|
void RenderStencilSpotLights(RasterCommandBuffer cmd, bool stripShadowsOffVariants, UniversalLightData lightData, UniversalShadowData shadowData, NativeArray<VisibleLight> visibleLights, bool hasAdditionalLightPass, bool hasLightCookieManager)
|
|
{
|
|
if (m_HemisphereMesh == null)
|
|
m_HemisphereMesh = CreateHemisphereMesh();
|
|
|
|
cmd.SetKeyword(ShaderGlobalKeywords._SPOT, true);
|
|
|
|
int lastLightCookieIndex = -1;
|
|
bool isFirstLight = true;
|
|
bool lastLightCookieKeywordState = false;
|
|
bool lastShadowsKeywordState = false;
|
|
bool lastSoftShadowsKeywordState = false;
|
|
for (int soffset = m_stencilVisLightOffsets[(int)LightType.Spot]; soffset < m_stencilVisLights.Length; ++soffset)
|
|
{
|
|
ushort visLightIndex = m_stencilVisLights[soffset];
|
|
|
|
ref VisibleLight vl = ref visibleLights.UnsafeElementAtMutable(visLightIndex);
|
|
if (vl.lightType != LightType.Spot)
|
|
break;
|
|
|
|
// Cache light to local, avoid light find on every access.
|
|
Light light = vl.light;
|
|
|
|
float alpha = Mathf.Deg2Rad * vl.spotAngle * 0.5f;
|
|
float cosAlpha = Mathf.Cos(alpha);
|
|
float sinAlpha = Mathf.Sin(alpha);
|
|
// Artificially inflate the geometric shape to fit the analytic spot shape.
|
|
// The tighter the spot shape, the lesser inflation is needed.
|
|
float guard = Mathf.Lerp(1.0f, kStencilShapeGuard, sinAlpha);
|
|
|
|
UniversalRenderPipeline.InitializeLightConstants_Common(visibleLights, visLightIndex, out Vector4 lightPos, out Vector4 lightColor, out Vector4 lightAttenuation, out Vector4 lightSpotDir, out Vector4 lightOcclusionChannel);
|
|
|
|
if (lightData.supportsLightLayers)
|
|
SetRenderingLayersMask(cmd, light, ShaderConstants._LightLayerMask);
|
|
|
|
int lightFlags = 0;
|
|
if (light.bakingOutput.lightmapBakeType == LightmapBakeType.Mixed)
|
|
lightFlags |= (int)LightFlag.SubtractiveMixedLighting;
|
|
|
|
// Determine whether the light is casting shadows and what the index it should use.
|
|
int shadowLightIndex = hasAdditionalLightPass ? m_AdditionalLightsShadowCasterPass.GetShadowLightIndexFromLightIndex(visLightIndex) : -1;
|
|
bool hasDeferredShadows = light && light.shadows != LightShadows.None && shadowLightIndex >= 0;
|
|
|
|
// Update keywords states
|
|
SetAdditionalLightsShadowsKeyword(ref cmd, stripShadowsOffVariants, shadowData.additionalLightShadowsEnabled, hasDeferredShadows, isFirstLight, ref lastShadowsKeywordState);
|
|
SetSoftShadowsKeyword(cmd, shadowData, light, hasDeferredShadows, isFirstLight, ref lastSoftShadowsKeywordState);
|
|
SetLightCookiesKeyword(cmd, visLightIndex, hasLightCookieManager, isFirstLight, ref lastLightCookieKeywordState, ref lastLightCookieIndex);
|
|
|
|
// Update Global properties
|
|
cmd.SetGlobalVector(ShaderConstants._SpotLightScale, new Vector4(sinAlpha, sinAlpha, 1.0f - cosAlpha, vl.range));
|
|
cmd.SetGlobalVector(ShaderConstants._SpotLightBias, new Vector4(0.0f, 0.0f, cosAlpha, 0.0f));
|
|
cmd.SetGlobalVector(ShaderConstants._SpotLightGuard, new Vector4(guard, guard, guard, cosAlpha * vl.range));
|
|
cmd.SetGlobalVector(ShaderConstants._LightPosWS, lightPos);
|
|
cmd.SetGlobalVector(ShaderConstants._LightColor, lightColor);
|
|
cmd.SetGlobalVector(ShaderConstants._LightAttenuation, lightAttenuation);
|
|
cmd.SetGlobalVector(ShaderConstants._LightDirection, new Vector3(lightSpotDir.x, lightSpotDir.y, lightSpotDir.z));
|
|
cmd.SetGlobalVector(ShaderConstants._LightOcclusionProbInfo, lightOcclusionChannel);
|
|
cmd.SetGlobalInt(ShaderConstants._LightFlags, lightFlags);
|
|
cmd.SetGlobalInt(ShaderConstants._ShadowLightIndex, shadowLightIndex);
|
|
|
|
// Stencil pass.
|
|
cmd.DrawMesh(m_HemisphereMesh, vl.localToWorldMatrix, m_StencilDeferredMaterial, 0, m_StencilDeferredPasses[(int)StencilDeferredPasses.StencilVolume]);
|
|
|
|
// Lighting pass.
|
|
cmd.DrawMesh(m_HemisphereMesh, vl.localToWorldMatrix, m_StencilDeferredMaterial, 0, m_StencilDeferredPasses[(int)StencilDeferredPasses.PunctualLit]);
|
|
cmd.DrawMesh(m_HemisphereMesh, vl.localToWorldMatrix, m_StencilDeferredMaterial, 0, m_StencilDeferredPasses[(int)StencilDeferredPasses.PunctualSimpleLit]);
|
|
|
|
isFirstLight = false;
|
|
}
|
|
cmd.SetKeyword(ShaderGlobalKeywords._SPOT, false);
|
|
}
|
|
|
|
void RenderSSAOBeforeShading(RasterCommandBuffer cmd)
|
|
{
|
|
if (m_FullscreenMesh == null)
|
|
m_FullscreenMesh = CreateFullscreenMesh();
|
|
|
|
cmd.DrawMesh(m_FullscreenMesh, Matrix4x4.identity, m_StencilDeferredMaterial, 0, m_StencilDeferredPasses[(int)StencilDeferredPasses.SSAOOnly]);
|
|
}
|
|
|
|
void RenderFog(RasterCommandBuffer cmd, bool isOrthographic)
|
|
{
|
|
// Legacy fog does not work in orthographic mode.
|
|
if (!RenderSettings.fog || isOrthographic)
|
|
return;
|
|
|
|
if (m_FullscreenMesh == null)
|
|
m_FullscreenMesh = CreateFullscreenMesh();
|
|
|
|
using (new ProfilingScope(cmd, m_ProfilingSamplerDeferredFogPass))
|
|
{
|
|
// Fog parameters and shader variant keywords are already set externally.
|
|
cmd.DrawMesh(m_FullscreenMesh, Matrix4x4.identity, m_StencilDeferredMaterial, 0, m_StencilDeferredPasses[(int)StencilDeferredPasses.Fog]);
|
|
}
|
|
}
|
|
|
|
void InitStencilDeferredMaterial()
|
|
{
|
|
if (m_StencilDeferredMaterial == null)
|
|
return;
|
|
|
|
// Pass indices can not be hardcoded because some platforms will strip out some passes, offset the index of later passes.
|
|
for (int pass = 0; pass < k_StencilDeferredPassNames.Length; ++pass)
|
|
m_StencilDeferredPasses[pass] = m_StencilDeferredMaterial.FindPass(k_StencilDeferredPassNames[pass]);
|
|
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._StencilRef, (float)StencilUsage.MaterialUnlit);
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._StencilReadMask, (float)StencilUsage.MaterialMask);
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._StencilWriteMask, (float)StencilUsage.StencilLight);
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._LitPunctualStencilRef, (float)((int)StencilUsage.StencilLight | (int)StencilUsage.MaterialLit));
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._LitPunctualStencilReadMask, (float)((int)StencilUsage.StencilLight | (int)StencilUsage.MaterialMask));
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._LitPunctualStencilWriteMask, (float)StencilUsage.StencilLight);
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._SimpleLitPunctualStencilRef, (float)((int)StencilUsage.StencilLight | (int)StencilUsage.MaterialSimpleLit));
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._SimpleLitPunctualStencilReadMask, (float)((int)StencilUsage.StencilLight | (int)StencilUsage.MaterialMask));
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._SimpleLitPunctualStencilWriteMask, (float)StencilUsage.StencilLight);
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._LitDirStencilRef, (float)StencilUsage.MaterialLit);
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._LitDirStencilReadMask, (float)StencilUsage.MaterialMask);
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._LitDirStencilWriteMask, 0.0f);
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._SimpleLitDirStencilRef, (float)StencilUsage.MaterialSimpleLit);
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._SimpleLitDirStencilReadMask, (float)StencilUsage.MaterialMask);
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._SimpleLitDirStencilWriteMask, 0.0f);
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._ClearStencilRef, 0.0f);
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._ClearStencilReadMask, (float)StencilUsage.MaterialMask);
|
|
m_StencilDeferredMaterial.SetFloat(ShaderConstants._ClearStencilWriteMask, (float)StencilUsage.MaterialMask);
|
|
}
|
|
|
|
static Mesh CreateSphereMesh()
|
|
{
|
|
// This icosaedron has been been slightly inflated to fit an unit sphere.
|
|
// This is the same geometry as built-in deferred.
|
|
|
|
Vector3[] positions =
|
|
{
|
|
new Vector3(0.000f, 0.000f, -1.070f), new Vector3(0.174f, -0.535f, -0.910f),
|
|
new Vector3(-0.455f, -0.331f, -0.910f), new Vector3(0.562f, 0.000f, -0.910f),
|
|
new Vector3(-0.455f, 0.331f, -0.910f), new Vector3(0.174f, 0.535f, -0.910f),
|
|
new Vector3(-0.281f, -0.865f, -0.562f), new Vector3(0.736f, -0.535f, -0.562f),
|
|
new Vector3(0.296f, -0.910f, -0.468f), new Vector3(-0.910f, 0.000f, -0.562f),
|
|
new Vector3(-0.774f, -0.562f, -0.478f), new Vector3(0.000f, -1.070f, 0.000f),
|
|
new Vector3(-0.629f, -0.865f, 0.000f), new Vector3(0.629f, -0.865f, 0.000f),
|
|
new Vector3(-1.017f, -0.331f, 0.000f), new Vector3(0.957f, 0.000f, -0.478f),
|
|
new Vector3(0.736f, 0.535f, -0.562f), new Vector3(1.017f, -0.331f, 0.000f),
|
|
new Vector3(1.017f, 0.331f, 0.000f), new Vector3(-0.296f, -0.910f, 0.478f),
|
|
new Vector3(0.281f, -0.865f, 0.562f), new Vector3(0.774f, -0.562f, 0.478f),
|
|
new Vector3(-0.736f, -0.535f, 0.562f), new Vector3(0.910f, 0.000f, 0.562f),
|
|
new Vector3(0.455f, -0.331f, 0.910f), new Vector3(-0.174f, -0.535f, 0.910f),
|
|
new Vector3(0.629f, 0.865f, 0.000f), new Vector3(0.774f, 0.562f, 0.478f),
|
|
new Vector3(0.455f, 0.331f, 0.910f), new Vector3(0.000f, 0.000f, 1.070f),
|
|
new Vector3(-0.562f, 0.000f, 0.910f), new Vector3(-0.957f, 0.000f, 0.478f),
|
|
new Vector3(0.281f, 0.865f, 0.562f), new Vector3(-0.174f, 0.535f, 0.910f),
|
|
new Vector3(0.296f, 0.910f, -0.478f), new Vector3(-1.017f, 0.331f, 0.000f),
|
|
new Vector3(-0.736f, 0.535f, 0.562f), new Vector3(-0.296f, 0.910f, 0.478f),
|
|
new Vector3(0.000f, 1.070f, 0.000f), new Vector3(-0.281f, 0.865f, -0.562f),
|
|
new Vector3(-0.774f, 0.562f, -0.478f), new Vector3(-0.629f, 0.865f, 0.000f),
|
|
};
|
|
|
|
int[] indices =
|
|
{
|
|
0, 1, 2, 0, 3, 1, 2, 4, 0, 0, 5, 3, 0, 4, 5, 1, 6, 2,
|
|
3, 7, 1, 1, 8, 6, 1, 7, 8, 9, 4, 2, 2, 6, 10, 10, 9, 2,
|
|
8, 11, 6, 6, 12, 10, 11, 12, 6, 7, 13, 8, 8, 13, 11, 10, 14, 9,
|
|
10, 12, 14, 3, 15, 7, 5, 16, 3, 3, 16, 15, 15, 17, 7, 17, 13, 7,
|
|
16, 18, 15, 15, 18, 17, 11, 19, 12, 13, 20, 11, 11, 20, 19, 17, 21, 13,
|
|
13, 21, 20, 12, 19, 22, 12, 22, 14, 17, 23, 21, 18, 23, 17, 21, 24, 20,
|
|
23, 24, 21, 20, 25, 19, 19, 25, 22, 24, 25, 20, 26, 18, 16, 18, 27, 23,
|
|
26, 27, 18, 28, 24, 23, 27, 28, 23, 24, 29, 25, 28, 29, 24, 25, 30, 22,
|
|
25, 29, 30, 14, 22, 31, 22, 30, 31, 32, 28, 27, 26, 32, 27, 33, 29, 28,
|
|
30, 29, 33, 33, 28, 32, 34, 26, 16, 5, 34, 16, 14, 31, 35, 14, 35, 9,
|
|
31, 30, 36, 30, 33, 36, 35, 31, 36, 37, 33, 32, 36, 33, 37, 38, 32, 26,
|
|
34, 38, 26, 38, 37, 32, 5, 39, 34, 39, 38, 34, 4, 39, 5, 9, 40, 4,
|
|
9, 35, 40, 4, 40, 39, 35, 36, 41, 41, 36, 37, 41, 37, 38, 40, 35, 41,
|
|
40, 41, 39, 41, 38, 39,
|
|
};
|
|
|
|
|
|
Mesh mesh = new Mesh();
|
|
mesh.indexFormat = IndexFormat.UInt16;
|
|
mesh.vertices = positions;
|
|
mesh.triangles = indices;
|
|
|
|
return mesh;
|
|
}
|
|
|
|
static Mesh CreateHemisphereMesh()
|
|
{
|
|
// TODO reorder for pre&post-transform cache optimisation.
|
|
// This capped hemisphere shape is in unit dimensions. It will be slightly inflated in the vertex shader
|
|
// to fit the cone analytical shape.
|
|
Vector3[] positions =
|
|
{
|
|
new Vector3(0.000000f, 0.000000f, 0.000000f), new Vector3(1.000000f, 0.000000f, 0.000000f),
|
|
new Vector3(0.923880f, 0.382683f, 0.000000f), new Vector3(0.707107f, 0.707107f, 0.000000f),
|
|
new Vector3(0.382683f, 0.923880f, 0.000000f), new Vector3(-0.000000f, 1.000000f, 0.000000f),
|
|
new Vector3(-0.382684f, 0.923880f, 0.000000f), new Vector3(-0.707107f, 0.707107f, 0.000000f),
|
|
new Vector3(-0.923880f, 0.382683f, 0.000000f), new Vector3(-1.000000f, -0.000000f, 0.000000f),
|
|
new Vector3(-0.923880f, -0.382683f, 0.000000f), new Vector3(-0.707107f, -0.707107f, 0.000000f),
|
|
new Vector3(-0.382683f, -0.923880f, 0.000000f), new Vector3(0.000000f, -1.000000f, 0.000000f),
|
|
new Vector3(0.382684f, -0.923879f, 0.000000f), new Vector3(0.707107f, -0.707107f, 0.000000f),
|
|
new Vector3(0.923880f, -0.382683f, 0.000000f), new Vector3(0.000000f, 0.000000f, 1.000000f),
|
|
new Vector3(0.707107f, 0.000000f, 0.707107f), new Vector3(0.000000f, -0.707107f, 0.707107f),
|
|
new Vector3(0.000000f, 0.707107f, 0.707107f), new Vector3(-0.707107f, 0.000000f, 0.707107f),
|
|
new Vector3(0.816497f, -0.408248f, 0.408248f), new Vector3(0.408248f, -0.408248f, 0.816497f),
|
|
new Vector3(0.408248f, -0.816497f, 0.408248f), new Vector3(0.408248f, 0.816497f, 0.408248f),
|
|
new Vector3(0.408248f, 0.408248f, 0.816497f), new Vector3(0.816497f, 0.408248f, 0.408248f),
|
|
new Vector3(-0.816497f, 0.408248f, 0.408248f), new Vector3(-0.408248f, 0.408248f, 0.816497f),
|
|
new Vector3(-0.408248f, 0.816497f, 0.408248f), new Vector3(-0.408248f, -0.816497f, 0.408248f),
|
|
new Vector3(-0.408248f, -0.408248f, 0.816497f), new Vector3(-0.816497f, -0.408248f, 0.408248f),
|
|
new Vector3(0.000000f, -0.923880f, 0.382683f), new Vector3(0.923880f, 0.000000f, 0.382683f),
|
|
new Vector3(0.000000f, -0.382683f, 0.923880f), new Vector3(0.382683f, 0.000000f, 0.923880f),
|
|
new Vector3(0.000000f, 0.923880f, 0.382683f), new Vector3(0.000000f, 0.382683f, 0.923880f),
|
|
new Vector3(-0.923880f, 0.000000f, 0.382683f), new Vector3(-0.382683f, 0.000000f, 0.923880f)
|
|
};
|
|
|
|
int[] indices =
|
|
{
|
|
0, 2, 1, 0, 3, 2, 0, 4, 3, 0, 5, 4, 0, 6, 5, 0,
|
|
7, 6, 0, 8, 7, 0, 9, 8, 0, 10, 9, 0, 11, 10, 0, 12,
|
|
11, 0, 13, 12, 0, 14, 13, 0, 15, 14, 0, 16, 15, 0, 1, 16,
|
|
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 14, 24, 34, 35,
|
|
22, 16, 36, 23, 37, 2, 27, 35, 38, 25, 4, 37, 26, 39, 6, 30,
|
|
38, 40, 28, 8, 39, 29, 41, 10, 33, 40, 34, 31, 12, 41, 32, 36,
|
|
15, 22, 24, 18, 23, 22, 19, 24, 23, 3, 25, 27, 20, 26, 25, 18,
|
|
27, 26, 7, 28, 30, 21, 29, 28, 20, 30, 29, 11, 31, 33, 19, 32,
|
|
31, 21, 33, 32, 13, 14, 34, 15, 24, 14, 19, 34, 24, 1, 35, 16,
|
|
18, 22, 35, 15, 16, 22, 17, 36, 37, 19, 23, 36, 18, 37, 23, 1,
|
|
2, 35, 3, 27, 2, 18, 35, 27, 5, 38, 4, 20, 25, 38, 3, 4,
|
|
25, 17, 37, 39, 18, 26, 37, 20, 39, 26, 5, 6, 38, 7, 30, 6,
|
|
20, 38, 30, 9, 40, 8, 21, 28, 40, 7, 8, 28, 17, 39, 41, 20,
|
|
29, 39, 21, 41, 29, 9, 10, 40, 11, 33, 10, 21, 40, 33, 13, 34,
|
|
12, 19, 31, 34, 11, 12, 31, 17, 41, 36, 21, 32, 41, 19, 36, 32
|
|
};
|
|
|
|
Mesh mesh = new Mesh();
|
|
mesh.indexFormat = IndexFormat.UInt16;
|
|
mesh.vertices = positions;
|
|
mesh.triangles = indices;
|
|
|
|
return mesh;
|
|
}
|
|
|
|
static Mesh CreateFullscreenMesh()
|
|
{
|
|
// TODO reorder for pre&post-transform cache optimisation.
|
|
// Simple full-screen triangle.
|
|
Vector3[] positions =
|
|
{
|
|
new Vector3(-1.0f, 1.0f, 0.0f),
|
|
new Vector3(-1.0f, -3.0f, 0.0f),
|
|
new Vector3(3.0f, 1.0f, 0.0f)
|
|
};
|
|
|
|
int[] indices = { 0, 1, 2 };
|
|
|
|
Mesh mesh = new Mesh();
|
|
mesh.indexFormat = IndexFormat.UInt16;
|
|
mesh.vertices = positions;
|
|
mesh.triangles = indices;
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Sets the correct value for _MainLightLayerMask/_LightLayerMask
|
|
private void SetRenderingLayersMask(RasterCommandBuffer cmd, Light light, int shaderPropertyID)
|
|
{
|
|
var additionalLightData = light.GetUniversalAdditionalLightData();
|
|
uint lightLayerMask = RenderingLayerUtils.ToValidRenderingLayers(additionalLightData.renderingLayers);
|
|
cmd.SetGlobalInt(shaderPropertyID, (int)lightLayerMask);
|
|
}
|
|
|
|
// Enable/Disable the _ADDITIONAL_LIGHT_SHADOWS keyword if it has changed...
|
|
private void SetAdditionalLightsShadowsKeyword(ref RasterCommandBuffer cmd, bool stripShadowsOffVariants, bool additionalLightShadowsEnabled, bool hasDeferredShadows, bool shouldOverride, ref bool lastShadowsKeyword)
|
|
{
|
|
bool additionalLightShadowsEnabledInAsset = additionalLightShadowsEnabled;
|
|
bool hasOffVariant = !stripShadowsOffVariants;
|
|
|
|
// AdditionalLightShadows Keyword is enabled when:
|
|
// Shadows are enabled in Asset and
|
|
// a) the OFF variant has been stripped
|
|
// b) light is casting a shadow
|
|
bool shouldEnable = additionalLightShadowsEnabledInAsset && (!hasOffVariant || hasDeferredShadows);
|
|
|
|
// Return if the state hasn't changed...
|
|
if (!shouldOverride && lastShadowsKeyword == shouldEnable)
|
|
return;
|
|
|
|
// Update the keyword state
|
|
lastShadowsKeyword = shouldEnable;
|
|
cmd.SetKeyword(ShaderGlobalKeywords.AdditionalLightShadows, shouldEnable);
|
|
}
|
|
|
|
// Enable/Disable the _SHADOWS_SOFT keyword if it has changed...
|
|
private void SetSoftShadowsKeyword(RasterCommandBuffer cmd, UniversalShadowData shadowData, Light light, bool hasDeferredShadows, bool shouldOverride, ref bool lastHasSoftShadow)
|
|
{
|
|
bool hasSoftShadow = hasDeferredShadows && shadowData.supportsSoftShadows && light.shadows == LightShadows.Soft;
|
|
|
|
// Return if the state hasn't changed...
|
|
if (!shouldOverride && lastHasSoftShadow == hasSoftShadow)
|
|
return;
|
|
|
|
// Update the keyword state
|
|
lastHasSoftShadow = hasSoftShadow;
|
|
ShadowUtils.SetPerLightSoftShadowKeyword(cmd, hasSoftShadow);
|
|
}
|
|
|
|
// Enable/Disable the _LIGHT_COOKIES keyword if it has changed and the light cookie index
|
|
private void SetLightCookiesKeyword(RasterCommandBuffer cmd, int visLightIndex, bool hasLightCookieManager, bool shouldOverride, ref bool lastLightCookieState, ref int lastCookieLightIndex)
|
|
{
|
|
if (!hasLightCookieManager)
|
|
return;
|
|
|
|
int cookieLightIndex = m_LightCookieManager.GetLightCookieShaderDataIndex(visLightIndex);
|
|
bool newState = cookieLightIndex >= 0;
|
|
if (shouldOverride || newState != lastLightCookieState)
|
|
{
|
|
lastLightCookieState = newState;
|
|
cmd.SetKeyword(ShaderGlobalKeywords.LightCookies, newState);
|
|
}
|
|
|
|
if (shouldOverride || cookieLightIndex != lastCookieLightIndex)
|
|
{
|
|
lastCookieLightIndex = cookieLightIndex;
|
|
cmd.SetGlobalInt(ShaderConstants._CookieLightIndex, cookieLightIndex);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
struct BitArray : System.IDisposable
|
|
{
|
|
NativeArray<uint> m_Mem; // ulong not supported in il2cpp???
|
|
int m_BitCount;
|
|
int m_IntCount;
|
|
|
|
public BitArray(int bitCount, Allocator allocator, NativeArrayOptions options = NativeArrayOptions.ClearMemory)
|
|
{
|
|
m_BitCount = bitCount;
|
|
m_IntCount = (bitCount + 31) >> 5;
|
|
m_Mem = new NativeArray<uint>(m_IntCount, allocator, options);
|
|
}
|
|
|
|
public void Dispose()
|
|
{
|
|
m_Mem.Dispose();
|
|
}
|
|
|
|
public void Clear()
|
|
{
|
|
for (int i = 0; i < m_IntCount; ++i)
|
|
m_Mem[i] = 0;
|
|
}
|
|
|
|
public bool IsSet(int bitIndex)
|
|
{
|
|
return (m_Mem[bitIndex >> 5] & (1u << (bitIndex & 31))) != 0;
|
|
}
|
|
|
|
public void Set(int bitIndex, bool val)
|
|
{
|
|
if (val)
|
|
m_Mem[bitIndex >> 5] |= 1u << (bitIndex & 31);
|
|
else
|
|
m_Mem[bitIndex >> 5] &= ~(1u << (bitIndex & 31));
|
|
}
|
|
};
|
|
*/
|
|
}
|