using static UnityEngine.Mathf; namespace UnityEngine.Rendering { /// /// An implementation of Hable's artist-friendly tonemapping curve. /// http://filmicworlds.com/blog/filmic-tonemapping-with-piecewise-power-curves/ /// public class HableCurve { /// /// Individual curve segment. /// public class Segment { /// /// The offset of the segment on the X axis. /// public float offsetX; /// /// The offset of the segment on the Y axis. /// public float offsetY; /// /// The scale of the segment on the X axis. /// public float scaleX; /// /// The scale of the segment on the Y axis. /// public float scaleY; /// /// ln(A) constant in the power curve y = e^(ln(A) + B*ln(x)). /// public float lnA; /// /// B constant in the power curve y = e^(ln(A) + B*ln(x)). /// public float B; /// /// Evaluate a point on the curve. /// /// The point to evaluate. /// The value of the curve, at the point specified. public float Eval(float x) { float x0 = (x - offsetX) * scaleX; float y0 = 0f; // log(0) is undefined but our function should evaluate to 0. There are better ways // to handle this, but it's doing it the slow way here for clarity. if (x0 > 0) y0 = Exp(lnA + B * Log(x0)); return y0 * scaleY + offsetY; } } struct DirectParams { internal float x0; internal float y0; internal float x1; internal float y1; internal float W; internal float overshootX; internal float overshootY; internal float gamma; } /// /// The white point. /// public float whitePoint { get; private set; } /// /// The inverse of the white point. /// /// public float inverseWhitePoint { get; private set; } /// /// The start of the linear section (middle segment of the curve). /// public float x0 { get; private set; } /// /// The end of the linear section (middle segment of the curve). /// public float x1 { get; private set; } /// /// The three segments of the curve. /// public readonly Segment[] segments = new Segment[3]; /// /// Creates a new curve. /// public HableCurve() { for (int i = 0; i < 3; i++) segments[i] = new Segment(); uniforms = new Uniforms(this); } /// /// Evaluates a point on the curve. /// /// The x-coordinate at which to evaluate the curve. /// The y-coordinate (value) of the curve at the specified x-coordinate. public float Eval(float x) { float normX = x * inverseWhitePoint; int index = (normX < x0) ? 0 : ((normX < x1) ? 1 : 2); var segment = segments[index]; float ret = segment.Eval(normX); return ret; } /// /// Initializes the curve. /// /// The strength of the transition between the curve's toe and the curve's mid-section. A value of 0 results in no transition and a value of 1 results in a very hard transition. /// The length of the curve's toe. Higher values result in longer toes and therefore contain more of the dynamic range. /// The strength of the transition between the curve's midsection and the curve's shoulder. A value of 0 results in no transition and a value of 1 results in a very hard transition. /// The amount of f-stops to add to the dynamic range of the curve. This is how much of the highlights that the curve takes into account. /// How much overshoot to add to the curve's shoulder. /// A gamma correction to the entire curve. public void Init(float toeStrength, float toeLength, float shoulderStrength, float shoulderLength, float shoulderAngle, float gamma) { var dstParams = new DirectParams(); // This is not actually the display gamma. It's just a UI space to avoid having to // enter small numbers for the input. const float kPerceptualGamma = 2.2f; // Constraints { toeLength = Pow(Clamp01(toeLength), kPerceptualGamma); toeStrength = Clamp01(toeStrength); shoulderAngle = Clamp01(shoulderAngle); shoulderStrength = Clamp(shoulderStrength, 1e-5f, 1f - 1e-5f); shoulderLength = Max(0f, shoulderLength); gamma = Max(1e-5f, gamma); } // Apply base params { // Toe goes from 0 to 0.5 float x0 = toeLength * 0.5f; float y0 = (1f - toeStrength) * x0; // Lerp from 0 to x0 float remainingY = 1f - y0; float initialW = x0 + remainingY; float y1_offset = (1f - shoulderStrength) * remainingY; float x1 = x0 + y1_offset; float y1 = y0 + y1_offset; // Filmic shoulder strength is in F stops float extraW = Pow(2f, shoulderLength) - 1f; float W = initialW + extraW; dstParams.x0 = x0; dstParams.y0 = y0; dstParams.x1 = x1; dstParams.y1 = y1; dstParams.W = W; // Bake the linear to gamma space conversion dstParams.gamma = gamma; } dstParams.overshootX = (dstParams.W * 2f) * shoulderAngle * shoulderLength; dstParams.overshootY = 0.5f * shoulderAngle * shoulderLength; InitSegments(dstParams); } void InitSegments(DirectParams srcParams) { var paramsCopy = srcParams; whitePoint = srcParams.W; inverseWhitePoint = 1f / srcParams.W; // normalize params to 1.0 range paramsCopy.W = 1f; paramsCopy.x0 /= srcParams.W; paramsCopy.x1 /= srcParams.W; paramsCopy.overshootX = srcParams.overshootX / srcParams.W; float toeM = 0f; float shoulderM = 0f; { float m, b; AsSlopeIntercept(out m, out b, paramsCopy.x0, paramsCopy.x1, paramsCopy.y0, paramsCopy.y1); float g = srcParams.gamma; // Base function of linear section plus gamma is // y = (mx+b)^g // // which we can rewrite as // y = exp(g*ln(m) + g*ln(x+b/m)) // // and our evaluation function is (skipping the if parts): /* float x0 = (x - offsetX) * scaleX; y0 = exp(m_lnA + m_B*log(x0)); return y0*scaleY + m_offsetY; */ var midSegment = segments[1]; midSegment.offsetX = -(b / m); midSegment.offsetY = 0f; midSegment.scaleX = 1f; midSegment.scaleY = 1f; midSegment.lnA = g * Log(m); midSegment.B = g; toeM = EvalDerivativeLinearGamma(m, b, g, paramsCopy.x0); shoulderM = EvalDerivativeLinearGamma(m, b, g, paramsCopy.x1); // apply gamma to endpoints paramsCopy.y0 = Max(1e-5f, Pow(paramsCopy.y0, paramsCopy.gamma)); paramsCopy.y1 = Max(1e-5f, Pow(paramsCopy.y1, paramsCopy.gamma)); paramsCopy.overshootY = Pow(1f + paramsCopy.overshootY, paramsCopy.gamma) - 1f; } this.x0 = paramsCopy.x0; this.x1 = paramsCopy.x1; // Toe section { var toeSegment = segments[0]; toeSegment.offsetX = 0; toeSegment.offsetY = 0f; toeSegment.scaleX = 1f; toeSegment.scaleY = 1f; float lnA, B; SolveAB(out lnA, out B, paramsCopy.x0, paramsCopy.y0, toeM); toeSegment.lnA = lnA; toeSegment.B = B; } // Shoulder section { // Use the simple version that is usually too flat var shoulderSegment = segments[2]; float x0 = (1f + paramsCopy.overshootX) - paramsCopy.x1; float y0 = (1f + paramsCopy.overshootY) - paramsCopy.y1; float lnA, B; SolveAB(out lnA, out B, x0, y0, shoulderM); shoulderSegment.offsetX = (1f + paramsCopy.overshootX); shoulderSegment.offsetY = (1f + paramsCopy.overshootY); shoulderSegment.scaleX = -1f; shoulderSegment.scaleY = -1f; shoulderSegment.lnA = lnA; shoulderSegment.B = B; } // Normalize so that we hit 1.0 at our white point. We wouldn't have do this if we // skipped the overshoot part. { // Evaluate shoulder at the end of the curve float scale = segments[2].Eval(1f); float invScale = 1f / scale; segments[0].offsetY *= invScale; segments[0].scaleY *= invScale; segments[1].offsetY *= invScale; segments[1].scaleY *= invScale; segments[2].offsetY *= invScale; segments[2].scaleY *= invScale; } } // Find a function of the form: // f(x) = e^(lnA + Bln(x)) // where // f(0) = 0; not really a constraint // f(x0) = y0 // f'(x0) = m void SolveAB(out float lnA, out float B, float x0, float y0, float m) { B = (m * x0) / y0; lnA = Log(y0) - B * Log(x0); } // Convert to y=mx+b void AsSlopeIntercept(out float m, out float b, float x0, float x1, float y0, float y1) { float dy = (y1 - y0); float dx = (x1 - x0); if (dx == 0) m = 1f; else m = dy / dx; b = y0 - x0 * m; } // f(x) = (mx+b)^g // f'(x) = gm(mx+b)^(g-1) float EvalDerivativeLinearGamma(float m, float b, float g, float x) { return g * m * Pow(m * x + b, g - 1f); } /// /// An utility class to ease the binding of curve parameters to shaders. /// public class Uniforms { HableCurve parent; internal Uniforms(HableCurve parent) { this.parent = parent; } /// /// Main curve settings, stored as (inverseWhitePoint, x0, x1, 0). /// public Vector4 curve => new Vector4(parent.inverseWhitePoint, parent.x0, parent.x1, 0f); /// /// Toe segment settings, stored as (offsetX, offsetY, scaleX, scaleY). /// public Vector4 toeSegmentA => new Vector4(parent.segments[0].offsetX, parent.segments[0].offsetY, parent.segments[0].scaleX, parent.segments[0].scaleY); /// /// Toe segment settings, stored as (ln1, B, 0, 0). /// public Vector4 toeSegmentB => new Vector4(parent.segments[0].lnA, parent.segments[0].B, 0f, 0f); /// /// Mid segment settings, stored as (offsetX, offsetY, scaleX, scaleY). /// public Vector4 midSegmentA => new Vector4(parent.segments[1].offsetX, parent.segments[1].offsetY, parent.segments[1].scaleX, parent.segments[1].scaleY); /// /// Mid segment settings, stored as (ln1, B, 0, 0). /// public Vector4 midSegmentB => new Vector4(parent.segments[1].lnA, parent.segments[1].B, 0f, 0f); /// /// Shoulder segment settings, stored as (offsetX, offsetY, scaleX, scaleY). /// public Vector4 shoSegmentA => new Vector4(parent.segments[2].offsetX, parent.segments[2].offsetY, parent.segments[2].scaleX, parent.segments[2].scaleY); /// /// Shoulder segment settings, stored as (ln1, B, 0, 0). /// public Vector4 shoSegmentB => new Vector4(parent.segments[2].lnA, parent.segments[2].B, 0f, 0f); } /// /// An instance of the utility class for this curve. /// public readonly Uniforms uniforms; } }