UnityGame/Library/PackageCache/com.unity.render-pipelines.universal/Runtime/Passes/PostProcessPassRenderGraph.cs

2110 lines
110 KiB
C#
Raw Normal View History

2024-10-27 10:53:47 +03:00
using UnityEngine.Experimental.Rendering;
using UnityEngine.Rendering.RenderGraphModule;
using System;
using UnityEngine.Rendering.Universal.Internal;
namespace UnityEngine.Rendering.Universal
{
internal partial class PostProcessPass : ScriptableRenderPass
{
static readonly int s_CameraDepthTextureID = Shader.PropertyToID("_CameraDepthTexture");
private class UpdateCameraResolutionPassData
{
internal Vector2Int newCameraTargetSize;
}
// Updates render target descriptors and shader constants to reflect a new render size
// This should be called immediately after the resolution changes mid-frame (typically after an upscaling operation).
void UpdateCameraResolution(RenderGraph renderGraph, UniversalCameraData cameraData, Vector2Int newCameraTargetSize)
{
// Update the local descriptor and the camera data descriptor to reflect post-upscaled sizes
m_Descriptor.width = newCameraTargetSize.x;
m_Descriptor.height = newCameraTargetSize.y;
cameraData.cameraTargetDescriptor.width = newCameraTargetSize.x;
cameraData.cameraTargetDescriptor.height = newCameraTargetSize.y;
// Update the shader constants to reflect the new camera resolution
using (var builder = renderGraph.AddUnsafePass<UpdateCameraResolutionPassData>("Update Camera Resolution", out var passData))
{
passData.newCameraTargetSize = newCameraTargetSize;
// This pass only modifies shader constants so we need to set some special flags to ensure it isn't culled or optimized away
builder.AllowGlobalStateModification(true);
builder.AllowPassCulling(false);
builder.SetRenderFunc(static (UpdateCameraResolutionPassData data, UnsafeGraphContext ctx) =>
{
ctx.cmd.SetGlobalVector(
ShaderPropertyId.screenSize,
new Vector4(
data.newCameraTargetSize.x,
data.newCameraTargetSize.y,
1.0f / data.newCameraTargetSize.x,
1.0f / data.newCameraTargetSize.y
)
);
});
}
}
#region StopNaNs
private class StopNaNsPassData
{
internal TextureHandle stopNaNTarget;
internal TextureHandle sourceTexture;
internal Material stopNaN;
}
public void RenderStopNaN(RenderGraph renderGraph, RenderTextureDescriptor cameraTargetDescriptor, in TextureHandle activeCameraColor, out TextureHandle stopNaNTarget)
{
var desc = PostProcessPass.GetCompatibleDescriptor(cameraTargetDescriptor,
cameraTargetDescriptor.width,
cameraTargetDescriptor.height,
cameraTargetDescriptor.graphicsFormat,
GraphicsFormat.None);
stopNaNTarget = UniversalRenderer.CreateRenderGraphTexture(renderGraph, desc, "_StopNaNsTarget", true, FilterMode.Bilinear);
using (var builder = renderGraph.AddRasterRenderPass<StopNaNsPassData>("Stop NaNs", out var passData,
ProfilingSampler.Get(URPProfileId.RG_StopNaNs)))
{
passData.stopNaNTarget = stopNaNTarget;
builder.SetRenderAttachment(stopNaNTarget, 0, AccessFlags.ReadWrite);
passData.sourceTexture = activeCameraColor;
builder.UseTexture(activeCameraColor, AccessFlags.Read);
passData.stopNaN = m_Materials.stopNaN;
builder.SetRenderFunc(static (StopNaNsPassData data, RasterGraphContext context) =>
{
var cmd = context.cmd;
RTHandle sourceTextureHdl = data.sourceTexture;
Vector2 viewportScale = sourceTextureHdl.useScaling? new Vector2(sourceTextureHdl.rtHandleProperties.rtHandleScale.x, sourceTextureHdl.rtHandleProperties.rtHandleScale.y) : Vector2.one;
Blitter.BlitTexture(cmd, sourceTextureHdl, viewportScale, data.stopNaN, 0);
});
}
}
#endregion
#region SMAA
private class SMAASetupPassData
{
internal Vector4 metrics;
internal Texture2D areaTexture;
internal Texture2D searchTexture;
internal float stencilRef;
internal float stencilMask;
internal AntialiasingQuality antialiasingQuality;
internal Material material;
}
private class SMAAPassData
{
internal TextureHandle destinationTexture;
internal TextureHandle sourceTexture;
internal TextureHandle depthStencilTexture;
internal TextureHandle blendTexture;
internal Material material;
}
public void RenderSMAA(RenderGraph renderGraph, UniversalResourceData resourceData, AntialiasingQuality antialiasingQuality, in TextureHandle source, out TextureHandle SMAATarget)
{
var desc = PostProcessPass.GetCompatibleDescriptor(m_Descriptor,
m_Descriptor.width,
m_Descriptor.height,
m_Descriptor.graphicsFormat,
GraphicsFormat.None);
SMAATarget = UniversalRenderer.CreateRenderGraphTexture(renderGraph, desc, "_SMAATarget", true, FilterMode.Bilinear);
var edgeTextureDesc = PostProcessPass.GetCompatibleDescriptor(m_Descriptor,
m_Descriptor.width,
m_Descriptor.height,
m_SMAAEdgeFormat,
GraphicsFormat.None);
var edgeTexture = UniversalRenderer.CreateRenderGraphTexture(renderGraph, edgeTextureDesc, "_EdgeStencilTexture", true, FilterMode.Bilinear);
var edgeTextureStencilDesc = PostProcessPass.GetCompatibleDescriptor(m_Descriptor,
m_Descriptor.width,
m_Descriptor.height,
GraphicsFormat.None,
GraphicsFormatUtility.GetDepthStencilFormat(24));
var edgeTextureStencil = UniversalRenderer.CreateRenderGraphTexture(renderGraph, edgeTextureStencilDesc, "_EdgeTexture", true, FilterMode.Bilinear);
var blendTextureDesc = PostProcessPass.GetCompatibleDescriptor(m_Descriptor,
m_Descriptor.width,
m_Descriptor.height,
GraphicsFormat.R8G8B8A8_UNorm,
GraphicsFormat.None);
var blendTexture = UniversalRenderer.CreateRenderGraphTexture(renderGraph, blendTextureDesc, "_BlendTexture", true, FilterMode.Point);
// Anti-aliasing
var material = m_Materials.subpixelMorphologicalAntialiasing;
using (var builder = renderGraph.AddRasterRenderPass<SMAASetupPassData>("SMAA Material Setup", out var passData, ProfilingSampler.Get(URPProfileId.RG_SMAAMaterialSetup)))
{
const int kStencilBit = 64;
// TODO RENDERGRAPH: handle dynamic scaling
passData.metrics = new Vector4(1f / m_Descriptor.width, 1f / m_Descriptor.height, m_Descriptor.width, m_Descriptor.height);
passData.areaTexture = m_Data.textures.smaaAreaTex;
passData.searchTexture = m_Data.textures.smaaSearchTex;
passData.stencilRef = (float)kStencilBit;
passData.stencilMask = (float)kStencilBit;
passData.antialiasingQuality = antialiasingQuality;
passData.material = material;
builder.AllowPassCulling(false);
builder.SetRenderFunc(static (SMAASetupPassData data, RasterGraphContext context) =>
{
// Globals
data.material.SetVector(ShaderConstants._Metrics, data.metrics);
data.material.SetTexture(ShaderConstants._AreaTexture, data.areaTexture);
data.material.SetTexture(ShaderConstants._SearchTexture, data.searchTexture);
data.material.SetFloat(ShaderConstants._StencilRef, data.stencilRef);
data.material.SetFloat(ShaderConstants._StencilMask, data.stencilMask);
// Quality presets
data.material.shaderKeywords = null;
switch (data.antialiasingQuality)
{
case AntialiasingQuality.Low:
data.material.EnableKeyword(ShaderKeywordStrings.SmaaLow);
break;
case AntialiasingQuality.Medium:
data.material.EnableKeyword(ShaderKeywordStrings.SmaaMedium);
break;
case AntialiasingQuality.High:
data.material.EnableKeyword(ShaderKeywordStrings.SmaaHigh);
break;
}
});
}
using (var builder = renderGraph.AddRasterRenderPass<SMAAPassData>("SMAA Edge Detection", out var passData, ProfilingSampler.Get(URPProfileId.RG_SMAAEdgeDetection)))
{
passData.destinationTexture = edgeTexture;
builder.SetRenderAttachment(edgeTexture, 0, AccessFlags.Write);
passData.depthStencilTexture = edgeTextureStencil;
builder.SetRenderAttachmentDepth(edgeTextureStencil, AccessFlags.Write);
passData.sourceTexture = source;
builder.UseTexture(source, AccessFlags.Read);
builder.UseTexture(resourceData.cameraDepth ,AccessFlags.Read);
passData.material = material;
builder.SetRenderFunc(static (SMAAPassData data, RasterGraphContext context) =>
{
var SMAAMaterial = data.material;
var cmd = context.cmd;
RTHandle sourceTextureHdl = data.sourceTexture;
// Pass 1: Edge detection
Vector2 viewportScale = sourceTextureHdl.useScaling ? new Vector2(sourceTextureHdl.rtHandleProperties.rtHandleScale.x, sourceTextureHdl.rtHandleProperties.rtHandleScale.y) : Vector2.one;
Blitter.BlitTexture(cmd, sourceTextureHdl, viewportScale, SMAAMaterial, 0);
});
}
using (var builder = renderGraph.AddRasterRenderPass<SMAAPassData>("SMAA Blend weights", out var passData, ProfilingSampler.Get(URPProfileId.RG_SMAABlendWeight)))
{
passData.destinationTexture = blendTexture;
builder.SetRenderAttachment(blendTexture, 0, AccessFlags.Write);
passData.depthStencilTexture = edgeTextureStencil;
builder.SetRenderAttachmentDepth(edgeTextureStencil, AccessFlags.Read);
passData.sourceTexture = edgeTexture;
builder.UseTexture(edgeTexture, AccessFlags.Read);
passData.material = material;
builder.SetRenderFunc(static (SMAAPassData data, RasterGraphContext context) =>
{
var SMAAMaterial = data.material;
var cmd = context.cmd;
RTHandle sourceTextureHdl = data.sourceTexture;
// Pass 2: Blend weights
Vector2 viewportScale = sourceTextureHdl.useScaling ? new Vector2(sourceTextureHdl.rtHandleProperties.rtHandleScale.x, sourceTextureHdl.rtHandleProperties.rtHandleScale.y) : Vector2.one;
Blitter.BlitTexture(cmd, sourceTextureHdl, viewportScale, SMAAMaterial, 1);
});
}
using (var builder = renderGraph.AddRasterRenderPass<SMAAPassData>("SMAA Neighborhood blending", out var passData, ProfilingSampler.Get(URPProfileId.RG_SMAANeighborhoodBlend)))
{
builder.AllowGlobalStateModification(true);
passData.destinationTexture = SMAATarget;
builder.SetRenderAttachment(SMAATarget, 0, AccessFlags.Write);
passData.sourceTexture = source;
builder.UseTexture(source, AccessFlags.Read);
passData.blendTexture = blendTexture;
builder.UseTexture(blendTexture, AccessFlags.Read);
passData.material = material;
builder.SetRenderFunc(static (SMAAPassData data, RasterGraphContext context) =>
{
var SMAAMaterial = data.material;
var cmd = context.cmd;
RTHandle sourceTextureHdl = data.sourceTexture;
// Pass 3: Neighborhood blending
SMAAMaterial.SetTexture(ShaderConstants._BlendTexture, data.blendTexture);
Vector2 viewportScale = sourceTextureHdl.useScaling ? new Vector2(sourceTextureHdl.rtHandleProperties.rtHandleScale.x, sourceTextureHdl.rtHandleProperties.rtHandleScale.y) : Vector2.one;
Blitter.BlitTexture(cmd, sourceTextureHdl, viewportScale, SMAAMaterial, 2);
});
}
}
#endregion
#region Bloom
private class UberSetupBloomPassData
{
internal Vector4 bloomParams;
internal Vector4 dirtScaleOffset;
internal float dirtIntensity;
internal Texture dirtTexture;
internal bool highQualityFilteringValue;
internal TextureHandle bloomTexture;
internal Material uberMaterial;
}
public void UberPostSetupBloomPass(RenderGraph rendergraph, in TextureHandle bloomTexture, Material uberMaterial)
{
using (var builder = rendergraph.AddRasterRenderPass<UberSetupBloomPassData>("Setup Bloom Post Processing", out var passData, ProfilingSampler.Get(URPProfileId.RG_UberPostSetupBloomPass)))
{
// Setup bloom on uber
var tint = m_Bloom.tint.value.linear;
var luma = ColorUtils.Luminance(tint);
tint = luma > 0f ? tint * (1f / luma) : Color.white;
var bloomParams = new Vector4(m_Bloom.intensity.value, tint.r, tint.g, tint.b);
// Setup lens dirtiness on uber
// Keep the aspect ratio correct & center the dirt texture, we don't want it to be
// stretched or squashed
var dirtTexture = m_Bloom.dirtTexture.value == null ? Texture2D.blackTexture : m_Bloom.dirtTexture.value;
float dirtRatio = dirtTexture.width / (float)dirtTexture.height;
float screenRatio = m_Descriptor.width / (float)m_Descriptor.height;
var dirtScaleOffset = new Vector4(1f, 1f, 0f, 0f);
float dirtIntensity = m_Bloom.dirtIntensity.value;
if (dirtRatio > screenRatio)
{
dirtScaleOffset.x = screenRatio / dirtRatio;
dirtScaleOffset.z = (1f - dirtScaleOffset.x) * 0.5f;
}
else if (screenRatio > dirtRatio)
{
dirtScaleOffset.y = dirtRatio / screenRatio;
dirtScaleOffset.w = (1f - dirtScaleOffset.y) * 0.5f;
}
passData.bloomParams = bloomParams;
passData.dirtScaleOffset = dirtScaleOffset;
passData.dirtIntensity = dirtIntensity;
passData.dirtTexture = dirtTexture;
passData.highQualityFilteringValue = m_Bloom.highQualityFiltering.value;
passData.bloomTexture = bloomTexture;
builder.UseTexture(bloomTexture, AccessFlags.Read);
passData.uberMaterial = uberMaterial;
// TODO RENDERGRAPH: properly setup dependencies between passes
builder.AllowPassCulling(false);
builder.SetRenderFunc(static (UberSetupBloomPassData data, RasterGraphContext context) =>
{
var uberMaterial = data.uberMaterial;
uberMaterial.SetVector(ShaderConstants._Bloom_Params, data.bloomParams);
uberMaterial.SetVector(ShaderConstants._LensDirt_Params, data.dirtScaleOffset);
uberMaterial.SetFloat(ShaderConstants._LensDirt_Intensity, data.dirtIntensity);
uberMaterial.SetTexture(ShaderConstants._LensDirt_Texture, data.dirtTexture);
// Keyword setup - a bit convoluted as we're trying to save some variants in Uber...
if (data.highQualityFilteringValue)
uberMaterial.EnableKeyword(data.dirtIntensity > 0f ? ShaderKeywordStrings.BloomHQDirt : ShaderKeywordStrings.BloomHQ);
else
uberMaterial.EnableKeyword(data.dirtIntensity > 0f ? ShaderKeywordStrings.BloomLQDirt : ShaderKeywordStrings.BloomLQ);
uberMaterial.SetTexture(ShaderConstants._Bloom_Texture, data.bloomTexture);
});
}
}
private class BloomPassData
{
internal int mipCount;
internal Material material;
internal Material[] upsampleMaterials;
internal TextureHandle sourceTexture;
internal TextureHandle[] bloomMipUp;
internal TextureHandle[] bloomMipDown;
}
internal struct BloomMaterialParams
{
internal Vector4 parameters;
internal bool highQualityFiltering;
internal bool enableAlphaOutput;
internal bool Equals(ref BloomMaterialParams other)
{
return parameters == other.parameters &&
highQualityFiltering == other.highQualityFiltering &&
enableAlphaOutput == other.enableAlphaOutput;
}
}
public void RenderBloomTexture(RenderGraph renderGraph, in TextureHandle source, out TextureHandle destination, bool enableAlphaOutput)
{
// Start at half-res
int downres = 1;
switch (m_Bloom.downscale.value)
{
case BloomDownscaleMode.Half:
downres = 1;
break;
case BloomDownscaleMode.Quarter:
downres = 2;
break;
default:
throw new ArgumentOutOfRangeException();
}
//We should set the limit the downres result to ensure we dont turn 1x1 textures, which should technically be valid
//into 0x0 textures which will be invalid
int tw = Mathf.Max(1, m_Descriptor.width >> downres);
int th = Mathf.Max(1, m_Descriptor.height >> downres);
// Determine the iteration count
int maxSize = Mathf.Max(tw, th);
int iterations = Mathf.FloorToInt(Mathf.Log(maxSize, 2f) - 1);
int mipCount = Mathf.Clamp(iterations, 1, m_Bloom.maxIterations.value);
// Setup
using(new ProfilingScope(ProfilingSampler.Get(URPProfileId.RG_BloomSetup)))
{
// Pre-filtering parameters
float clamp = m_Bloom.clamp.value;
float threshold = Mathf.GammaToLinearSpace(m_Bloom.threshold.value);
float thresholdKnee = threshold * 0.5f; // Hardcoded soft knee
// Material setup
float scatter = Mathf.Lerp(0.05f, 0.95f, m_Bloom.scatter.value);
BloomMaterialParams bloomParams = new BloomMaterialParams();
bloomParams.parameters = new Vector4(scatter, clamp, threshold, thresholdKnee);
bloomParams.highQualityFiltering = m_Bloom.highQualityFiltering.value;
bloomParams.enableAlphaOutput = enableAlphaOutput;
// Setting keywords can be somewhat expensive on low-end platforms.
// Previous params are cached to avoid setting the same keywords every frame.
var material = m_Materials.bloom;
bool bloomParamsDirty = !m_BloomParamsPrev.Equals(ref bloomParams);
bool isParamsPropertySet = material.HasProperty(ShaderConstants._Params);
if (bloomParamsDirty || !isParamsPropertySet)
{
material.SetVector(ShaderConstants._Params, bloomParams.parameters);
CoreUtils.SetKeyword(material, ShaderKeywordStrings.BloomHQ, bloomParams.highQualityFiltering);
CoreUtils.SetKeyword(material, ShaderKeywordStrings._ENABLE_ALPHA_OUTPUT, bloomParams.enableAlphaOutput);
// These materials are duplicate just to allow different bloom blits to use different textures.
for (uint i = 0; i < k_MaxPyramidSize; ++i)
{
var materialPyramid = m_Materials.bloomUpsample[i];
materialPyramid.SetVector(ShaderConstants._Params, bloomParams.parameters);
CoreUtils.SetKeyword(materialPyramid, ShaderKeywordStrings.BloomHQ, bloomParams.highQualityFiltering);
CoreUtils.SetKeyword(materialPyramid, ShaderKeywordStrings._ENABLE_ALPHA_OUTPUT, bloomParams.enableAlphaOutput);
}
m_BloomParamsPrev = bloomParams;
}
// Create bloom mip pyramid textures
{
var desc = GetCompatibleDescriptor(tw, th, m_DefaultColorFormat);
_BloomMipDown[0] = UniversalRenderer.CreateRenderGraphTexture(renderGraph, desc, m_BloomMipDown[0].name, false, FilterMode.Bilinear);
_BloomMipUp[0] = UniversalRenderer.CreateRenderGraphTexture(renderGraph, desc, m_BloomMipUp[0].name, false, FilterMode.Bilinear);
for (int i = 1; i < mipCount; i++)
{
tw = Mathf.Max(1, tw >> 1);
th = Mathf.Max(1, th >> 1);
ref TextureHandle mipDown = ref _BloomMipDown[i];
ref TextureHandle mipUp = ref _BloomMipUp[i];
desc.width = tw;
desc.height = th;
// NOTE: Reuse RTHandle names for TextureHandles
mipDown = UniversalRenderer.CreateRenderGraphTexture(renderGraph, desc, m_BloomMipDown[i].name, false, FilterMode.Bilinear);
mipUp = UniversalRenderer.CreateRenderGraphTexture(renderGraph, desc, m_BloomMipUp[i].name, false, FilterMode.Bilinear);
}
}
}
using (var builder = renderGraph.AddUnsafePass<BloomPassData>("Blit Bloom Mipmaps", out var passData, ProfilingSampler.Get(URPProfileId.Bloom)))
{
passData.mipCount = mipCount;
passData.material = m_Materials.bloom;
passData.upsampleMaterials = m_Materials.bloomUpsample;
passData.sourceTexture = source;
passData.bloomMipDown = _BloomMipDown;
passData.bloomMipUp = _BloomMipUp;
// TODO RENDERGRAPH: properly setup dependencies between passes
builder.AllowPassCulling(false);
builder.UseTexture(source, AccessFlags.Read);
for (int i = 0; i < mipCount; i++)
{
builder.UseTexture(_BloomMipDown[i], AccessFlags.ReadWrite);
builder.UseTexture(_BloomMipUp[i], AccessFlags.ReadWrite);
}
builder.SetRenderFunc(static (BloomPassData data, UnsafeGraphContext context) =>
{
// TODO: can't call BlitTexture with unsafe command buffer
var cmd = CommandBufferHelpers.GetNativeCommandBuffer(context.cmd);
var material = data.material;
int mipCount = data.mipCount;
var loadAction = RenderBufferLoadAction.DontCare; // Blit - always write all pixels
var storeAction = RenderBufferStoreAction.Store; // Blit - always read by then next Blit
// Prefilter
using(new ProfilingScope(cmd, ProfilingSampler.Get(URPProfileId.RG_BloomPrefilter)))
{
Blitter.BlitCameraTexture(cmd, data.sourceTexture, data.bloomMipDown[0], loadAction, storeAction, material, 0);
}
// Downsample - gaussian pyramid
// Classic two pass gaussian blur - use mipUp as a temporary target
// First pass does 2x downsampling + 9-tap gaussian
// Second pass does 9-tap gaussian using a 5-tap filter + bilinear filtering
using(new ProfilingScope(cmd, ProfilingSampler.Get(URPProfileId.RG_BloomDownsample)))
{
TextureHandle lastDown = data.bloomMipDown[0];
for (int i = 1; i < mipCount; i++)
{
TextureHandle mipDown = data.bloomMipDown[i];
TextureHandle mipUp = data.bloomMipUp[i];
Blitter.BlitCameraTexture(cmd, lastDown, mipUp, loadAction, storeAction, material, 1);
Blitter.BlitCameraTexture(cmd, mipUp, mipDown, loadAction, storeAction, material, 2);
lastDown = mipDown;
}
}
using (new ProfilingScope(cmd, ProfilingSampler.Get(URPProfileId.RG_BloomUpsample)))
{
// Upsample (bilinear by default, HQ filtering does bicubic instead
for (int i = mipCount - 2; i >= 0; i--)
{
TextureHandle lowMip = (i == mipCount - 2) ? data.bloomMipDown[i + 1] : data.bloomMipUp[i + 1];
TextureHandle highMip = data.bloomMipDown[i];
TextureHandle dst = data.bloomMipUp[i];
// We need a separate material for each upsample pass because setting the low texture mip source
// gets overriden by the time the render func is executed.
// Material is a reference, so all the blits would share the same material state in the cmdbuf.
// NOTE: another option would be to use cmd.SetGlobalTexture().
var upMaterial = data.upsampleMaterials[i];
upMaterial.SetTexture(ShaderConstants._SourceTexLowMip, lowMip);
Blitter.BlitCameraTexture(cmd, highMip, dst, loadAction, storeAction, upMaterial, 3);
}
}
});
destination = passData.bloomMipUp[0];
}
}
#endregion
#region DoF
public void RenderDoF(RenderGraph renderGraph, UniversalResourceData resourceData, UniversalCameraData cameraData, in TextureHandle source, out TextureHandle destination)
{
var dofMaterial = m_DepthOfField.mode.value == DepthOfFieldMode.Gaussian ? m_Materials.gaussianDepthOfField : m_Materials.bokehDepthOfField;
var desc = PostProcessPass.GetCompatibleDescriptor(m_Descriptor,
m_Descriptor.width,
m_Descriptor.height,
m_Descriptor.graphicsFormat,
GraphicsFormat.None);
destination = UniversalRenderer.CreateRenderGraphTexture(renderGraph, desc, "_DoFTarget", true, FilterMode.Bilinear);
CoreUtils.SetKeyword(dofMaterial, ShaderKeywordStrings._ENABLE_ALPHA_OUTPUT, cameraData.isAlphaOutputEnabled);
if (m_DepthOfField.mode.value == DepthOfFieldMode.Gaussian)
{
RenderDoFGaussian(renderGraph, resourceData, cameraData, source, destination, ref dofMaterial);
}
else if (m_DepthOfField.mode.value == DepthOfFieldMode.Bokeh)
{
RenderDoFBokeh(renderGraph, resourceData, cameraData, source, destination, ref dofMaterial);
}
}
private class DoFGaussianPassData
{
// Setup
internal int downsample;
internal RenderingData renderingData;
internal Vector3 cocParams;
internal bool highQualitySamplingValue;
// Inputs
internal TextureHandle sourceTexture;
internal TextureHandle depthTexture;
internal Material material;
internal Material materialCoC;
// Pass textures
internal TextureHandle halfCoCTexture;
internal TextureHandle fullCoCTexture;
internal TextureHandle pingTexture;
internal TextureHandle pongTexture;
internal RenderTargetIdentifier[] multipleRenderTargets = new RenderTargetIdentifier[2];
// Output textures
internal TextureHandle destination;
};
public void RenderDoFGaussian(RenderGraph renderGraph, UniversalResourceData resourceData, UniversalCameraData cameraData, in TextureHandle source, TextureHandle destination, ref Material dofMaterial)
{
var material = dofMaterial;
int downSample = 2;
int wh = m_Descriptor.width / downSample;
int hh = m_Descriptor.height / downSample;
// Pass Textures
var fullCoCTextureDesc = PostProcessPass.GetCompatibleDescriptor(m_Descriptor, m_Descriptor.width, m_Descriptor.height, m_GaussianCoCFormat);
var fullCoCTexture = UniversalRenderer.CreateRenderGraphTexture(renderGraph, fullCoCTextureDesc, "_FullCoCTexture", true, FilterMode.Bilinear);
var halfCoCTextureDesc = PostProcessPass.GetCompatibleDescriptor(m_Descriptor, wh, hh, m_GaussianCoCFormat);
var halfCoCTexture = UniversalRenderer.CreateRenderGraphTexture(renderGraph, halfCoCTextureDesc, "_HalfCoCTexture", true, FilterMode.Bilinear);
var pingTextureDesc = PostProcessPass.GetCompatibleDescriptor(m_Descriptor, wh, hh, m_DefaultColorFormat);
var pingTexture = UniversalRenderer.CreateRenderGraphTexture(renderGraph, pingTextureDesc, "_PingTexture", true, FilterMode.Bilinear);
var pongTextureDesc = PostProcessPass.GetCompatibleDescriptor(m_Descriptor, wh, hh, m_DefaultColorFormat);
var pongTexture = UniversalRenderer.CreateRenderGraphTexture(renderGraph, pongTextureDesc, "_PongTexture", true, FilterMode.Bilinear);
using (var builder = renderGraph.AddUnsafePass<DoFGaussianPassData>("Depth of Field - Gaussian", out var passData))
{
// Setup
float farStart = m_DepthOfField.gaussianStart.value;
float farEnd = Mathf.Max(farStart, m_DepthOfField.gaussianEnd.value);
// Assumes a radius of 1 is 1 at 1080p
// Past a certain radius our gaussian kernel will look very bad so we'll clamp it for
// very high resolutions (4K+).
float maxRadius = m_DepthOfField.gaussianMaxRadius.value * (wh / 1080f);
maxRadius = Mathf.Min(maxRadius, 2f);
passData.downsample = downSample;
passData.cocParams = new Vector3(farStart, farEnd, maxRadius);
passData.highQualitySamplingValue = m_DepthOfField.highQualitySampling.value;
passData.material = material;
passData.materialCoC = m_Materials.gaussianDepthOfFieldCoC;
// Inputs
passData.sourceTexture = source;
builder.UseTexture(source, AccessFlags.Read);
passData.depthTexture = resourceData.cameraDepthTexture;
builder.UseTexture(resourceData.cameraDepthTexture, AccessFlags.Read);
// Pass Textures
passData.fullCoCTexture = fullCoCTexture;
builder.UseTexture(fullCoCTexture, AccessFlags.ReadWrite);
passData.halfCoCTexture = halfCoCTexture;
builder.UseTexture(halfCoCTexture, AccessFlags.ReadWrite);
passData.pingTexture = pingTexture;
builder.UseTexture(pingTexture, AccessFlags.ReadWrite);
passData.pongTexture = pongTexture;
builder.UseTexture(pongTexture, AccessFlags.ReadWrite);
// Outputs
passData.destination = destination;
builder.UseTexture(destination, AccessFlags.Write);
builder.SetRenderFunc(static (DoFGaussianPassData data, UnsafeGraphContext context) =>
{
var dofMat = data.material;
var dofMaterialCoC = data.materialCoC;
var cmd = CommandBufferHelpers.GetNativeCommandBuffer(context.cmd);
RTHandle sourceTextureHdl = data.sourceTexture;
RTHandle dstHdl = data.destination;
// Setup
using (new ProfilingScope(ProfilingSampler.Get(URPProfileId.RG_SetupDoF)))
{
dofMat.SetVector(ShaderConstants._CoCParams, data.cocParams);
CoreUtils.SetKeyword(dofMat, ShaderKeywordStrings.HighQualitySampling,
data.highQualitySamplingValue);
dofMaterialCoC.SetVector(ShaderConstants._CoCParams, data.cocParams);
CoreUtils.SetKeyword(dofMaterialCoC, ShaderKeywordStrings.HighQualitySampling,
data.highQualitySamplingValue);
PostProcessUtils.SetSourceSize(cmd, data.sourceTexture);
dofMat.SetVector(ShaderConstants._DownSampleScaleFactor,
new Vector4(1.0f / data.downsample, 1.0f / data.downsample, data.downsample,
data.downsample));
}
// Compute CoC
using (new ProfilingScope(ProfilingSampler.Get(URPProfileId.RG_DOFComputeCOC)))
{
dofMat.SetTexture(s_CameraDepthTextureID, data.depthTexture);
Blitter.BlitCameraTexture(cmd, data.sourceTexture, data.fullCoCTexture, data.materialCoC, k_GaussianDoFPassComputeCoc);
}
// Downscale & prefilter color + CoC
using (new ProfilingScope(ProfilingSampler.Get(URPProfileId.RG_DOFDownscalePrefilter)))
{
dofMat.SetTexture(ShaderConstants._FullCoCTexture, data.fullCoCTexture);
// Handle packed shader output
data.multipleRenderTargets[0] = data.halfCoCTexture;
data.multipleRenderTargets[1] = data.pingTexture;
CoreUtils.SetRenderTarget(cmd, data.multipleRenderTargets, data.halfCoCTexture);
Vector2 viewportScale = sourceTextureHdl.useScaling ? new Vector2(sourceTextureHdl.rtHandleProperties.rtHandleScale.x, sourceTextureHdl.rtHandleProperties.rtHandleScale.y) : Vector2.one;
Blitter.BlitTexture(cmd, data.sourceTexture, viewportScale, dofMat, k_GaussianDoFPassDownscalePrefilter);
}
// Blur H
using (new ProfilingScope(ProfilingSampler.Get(URPProfileId.RG_DOFBlurH)))
{
dofMat.SetTexture(ShaderConstants._HalfCoCTexture, data.halfCoCTexture);
Blitter.BlitCameraTexture(cmd, data.pingTexture, data.pongTexture, dofMat, k_GaussianDoFPassBlurH);
}
// Blur V
using (new ProfilingScope(ProfilingSampler.Get(URPProfileId.RG_DOFBlurV)))
{
Blitter.BlitCameraTexture(cmd, data.pongTexture, data.pingTexture, dofMat, k_GaussianDoFPassBlurV);
}
// Composite
using (new ProfilingScope(ProfilingSampler.Get(URPProfileId.RG_DOFComposite)))
{
dofMat.SetTexture(ShaderConstants._ColorTexture, data.pingTexture);
dofMat.SetTexture(ShaderConstants._FullCoCTexture, data.fullCoCTexture);
Blitter.BlitCameraTexture(cmd, sourceTextureHdl, dstHdl, dofMat, k_GaussianDoFPassComposite);
}
});
}
}
private class DoFBokehPassData
{
// Setup
internal Vector4[] bokehKernel;
internal int downSample;
internal float uvMargin;
internal Vector4 cocParams;
internal bool useFastSRGBLinearConversion;
// Inputs
internal TextureHandle sourceTexture;
internal TextureHandle depthTexture;
internal Material material;
internal Material materialCoC;
// Pass textures
internal TextureHandle halfCoCTexture;
internal TextureHandle fullCoCTexture;
internal TextureHandle pingTexture;
internal TextureHandle pongTexture;
// Output texture
internal TextureHandle destination;
};
public void RenderDoFBokeh(RenderGraph renderGraph, UniversalResourceData resourceData, UniversalCameraData cameraData, in TextureHandle source, in TextureHandle destination, ref Material dofMaterial)
{
int downSample = 2;
var material = dofMaterial;
int wh = m_Descriptor.width / downSample;
int hh = m_Descriptor.height / downSample;
// Pass Textures
var fullCoCTextureDesc = PostProcessPass.GetCompatibleDescriptor(m_Descriptor, m_Descriptor.width, m_Descriptor.height, GraphicsFormat.R8_UNorm);
var fullCoCTexture = UniversalRenderer.CreateRenderGraphTexture(renderGraph, fullCoCTextureDesc, "_FullCoCTexture", true, FilterMode.Bilinear);
var pingTextureDesc = PostProcessPass.GetCompatibleDescriptor(m_Descriptor, wh, hh, GraphicsFormat.R16G16B16A16_SFloat);
var pingTexture = UniversalRenderer.CreateRenderGraphTexture(renderGraph, pingTextureDesc, "_PingTexture", true, FilterMode.Bilinear);
var pongTextureDesc = PostProcessPass.GetCompatibleDescriptor(m_Descriptor, wh, hh, GraphicsFormat.R16G16B16A16_SFloat);
var pongTexture = UniversalRenderer.CreateRenderGraphTexture(renderGraph, pongTextureDesc, "_PongTexture", true, FilterMode.Bilinear);
using (var builder = renderGraph.AddUnsafePass<DoFBokehPassData>("Depth of Field - Bokeh", out var passData))
{
// Setup
// "A Lens and Aperture Camera Model for Synthetic Image Generation" [Potmesil81]
float F = m_DepthOfField.focalLength.value / 1000f;
float A = m_DepthOfField.focalLength.value / m_DepthOfField.aperture.value;
float P = m_DepthOfField.focusDistance.value;
float maxCoC = (A * F) / (P - F);
float maxRadius = GetMaxBokehRadiusInPixels(m_Descriptor.height);
float rcpAspect = 1f / (wh / (float)hh);
// Prepare the bokeh kernel constant buffer
int hash = m_DepthOfField.GetHashCode();
if (hash != m_BokehHash || maxRadius != m_BokehMaxRadius || rcpAspect != m_BokehRCPAspect)
{
m_BokehHash = hash;
m_BokehMaxRadius = maxRadius;
m_BokehRCPAspect = rcpAspect;
PrepareBokehKernel(maxRadius, rcpAspect);
}
float uvMargin = (1.0f / m_Descriptor.height) * downSample;
passData.bokehKernel = m_BokehKernel;
passData.downSample = downSample;
passData.uvMargin = uvMargin;
passData.cocParams = new Vector4(P, maxCoC, maxRadius, rcpAspect);
passData.useFastSRGBLinearConversion = m_UseFastSRGBLinearConversion;
// Inputs
passData.sourceTexture = source;
builder.UseTexture(source, AccessFlags.Read);
passData.depthTexture = resourceData.cameraDepthTexture;
builder.UseTexture(resourceData.cameraDepthTexture, AccessFlags.Read);
passData.material = material;
passData.materialCoC = m_Materials.bokehDepthOfFieldCoC;
// Pass Textures
passData.fullCoCTexture = fullCoCTexture;
builder.UseTexture(fullCoCTexture, AccessFlags.ReadWrite);
passData.pingTexture = pingTexture;
builder.UseTexture(pingTexture, AccessFlags.ReadWrite);
passData.pongTexture = pongTexture;
builder.UseTexture(pongTexture, AccessFlags.ReadWrite);
// Outputs
passData.destination = destination;
builder.UseTexture(destination, AccessFlags.Write);
// TODO RENDERGRAPH: properly setup dependencies between passes
builder.SetRenderFunc(static (DoFBokehPassData data, UnsafeGraphContext context) =>
{
var dofMat = data.material;
var dofMaterialCoC = data.materialCoC;
var cmd = CommandBufferHelpers.GetNativeCommandBuffer(context.cmd);
RTHandle sourceTextureHdl = data.sourceTexture;
RTHandle dst = data.destination;
// Setup
using (new ProfilingScope(ProfilingSampler.Get(URPProfileId.RG_SetupDoF)))
{
CoreUtils.SetKeyword(dofMat, ShaderKeywordStrings.UseFastSRGBLinearConversion,
data.useFastSRGBLinearConversion);
CoreUtils.SetKeyword(dofMaterialCoC, ShaderKeywordStrings.UseFastSRGBLinearConversion,
data.useFastSRGBLinearConversion);
dofMat.SetVector(ShaderConstants._CoCParams, data.cocParams);
dofMat.SetVectorArray(ShaderConstants._BokehKernel, data.bokehKernel);
dofMat.SetVector(ShaderConstants._DownSampleScaleFactor,
new Vector4(1.0f / data.downSample, 1.0f / data.downSample, data.downSample,
data.downSample));
dofMat.SetVector(ShaderConstants._BokehConstants,
new Vector4(data.uvMargin, data.uvMargin * 2.0f));
PostProcessUtils.SetSourceSize(cmd, data.sourceTexture);
}
// Compute CoC
using (new ProfilingScope(ProfilingSampler.Get(URPProfileId.RG_DOFComputeCOC)))
{
dofMat.SetTexture(s_CameraDepthTextureID, data.depthTexture);
Blitter.BlitCameraTexture(cmd, sourceTextureHdl, data.fullCoCTexture, dofMat, k_BokehDoFPassComputeCoc);
}
// Downscale and Prefilter Color + CoC
using (new ProfilingScope(ProfilingSampler.Get(URPProfileId.RG_DOFDownscalePrefilter)))
{
dofMat.SetTexture(ShaderConstants._FullCoCTexture, data.fullCoCTexture);
Blitter.BlitCameraTexture(cmd, sourceTextureHdl, data.pingTexture, dofMat, k_BokehDoFPassDownscalePrefilter);
}
// Blur
using (new ProfilingScope(ProfilingSampler.Get(URPProfileId.RG_DOFBlurBokeh)))
{
Blitter.BlitCameraTexture(cmd, data.pingTexture, data.pongTexture, dofMat, k_BokehDoFPassBlur);
}
// Post Filtering
using (new ProfilingScope(ProfilingSampler.Get(URPProfileId.RG_DOFPostFilter)))
{
Blitter.BlitCameraTexture(cmd, data.pongTexture, data.pingTexture, dofMat, k_BokehDoFPassPostFilter);
}
// Composite
using (new ProfilingScope(ProfilingSampler.Get(URPProfileId.RG_DOFComposite)))
{
dofMat.SetTexture(ShaderConstants._DofTexture, data.pingTexture);
Blitter.BlitCameraTexture(cmd, sourceTextureHdl, dst, dofMat, k_BokehDoFPassComposite);
}
});
}
}
#endregion
#region Panini
private class PaniniProjectionPassData
{
internal TextureHandle destinationTexture;
internal TextureHandle sourceTexture;
internal RenderTextureDescriptor sourceTextureDesc;
internal Material material;
internal Vector4 paniniParams;
internal bool isPaniniGeneric;
}
public void RenderPaniniProjection(RenderGraph renderGraph, Camera camera, in TextureHandle source, out TextureHandle destination)
{
var desc = PostProcessPass.GetCompatibleDescriptor(m_Descriptor,
m_Descriptor.width,
m_Descriptor.height,
m_Descriptor.graphicsFormat,
GraphicsFormat.None);
destination = UniversalRenderer.CreateRenderGraphTexture(renderGraph, desc, "_PaniniProjectionTarget", true, FilterMode.Bilinear);
float distance = m_PaniniProjection.distance.value;
var viewExtents = CalcViewExtents(camera);
var cropExtents = CalcCropExtents(camera, distance);
float scaleX = cropExtents.x / viewExtents.x;
float scaleY = cropExtents.y / viewExtents.y;
float scaleF = Mathf.Min(scaleX, scaleY);
float paniniD = distance;
float paniniS = Mathf.Lerp(1f, Mathf.Clamp01(scaleF), m_PaniniProjection.cropToFit.value);
using (var builder = renderGraph.AddRasterRenderPass<PaniniProjectionPassData>("Panini Projection", out var passData, ProfilingSampler.Get(URPProfileId.PaniniProjection)))
{
builder.AllowGlobalStateModification(true);
passData.destinationTexture = destination;
builder.SetRenderAttachment(destination, 0, AccessFlags.Write);
passData.sourceTexture = source;
builder.UseTexture(source, AccessFlags.Read);
passData.material = m_Materials.paniniProjection;
passData.paniniParams = new Vector4(viewExtents.x, viewExtents.y, paniniD, paniniS);
passData.isPaniniGeneric = 1f - Mathf.Abs(paniniD) > float.Epsilon;
passData.sourceTextureDesc = m_Descriptor;
builder.SetRenderFunc(static (PaniniProjectionPassData data, RasterGraphContext context) =>
{
var cmd = context.cmd;
RTHandle sourceTextureHdl = data.sourceTexture;
cmd.SetGlobalVector(ShaderConstants._Params, data.paniniParams);
data.material.EnableKeyword(data.isPaniniGeneric ? ShaderKeywordStrings.PaniniGeneric : ShaderKeywordStrings.PaniniUnitDistance);
Vector2 viewportScale = sourceTextureHdl.useScaling ? new Vector2(sourceTextureHdl.rtHandleProperties.rtHandleScale.x, sourceTextureHdl.rtHandleProperties.rtHandleScale.y) : Vector2.one;
Blitter.BlitTexture(cmd, sourceTextureHdl, viewportScale, data.material, 0);
});
return;
}
}
#endregion
#region TemporalAA
private const string _TemporalAATargetName = "_TemporalAATarget";
private void RenderTemporalAA(RenderGraph renderGraph, UniversalResourceData resourceData, UniversalCameraData cameraData, ref TextureHandle source, out TextureHandle destination)
{
var desc = PostProcessPass.GetCompatibleDescriptor(m_Descriptor,
m_Descriptor.width,
m_Descriptor.height,
m_Descriptor.graphicsFormat,
GraphicsFormat.None);
destination = UniversalRenderer.CreateRenderGraphTexture(renderGraph, desc, _TemporalAATargetName, false, FilterMode.Bilinear);
TextureHandle cameraDepth = resourceData.cameraDepth;
TextureHandle motionVectors = resourceData.motionVectorColor;
Debug.Assert(motionVectors.IsValid(), "MotionVectors are invalid. TAA requires a motion vector texture.");
TemporalAA.Render(renderGraph, m_Materials.temporalAntialiasing, cameraData, ref source, ref cameraDepth, ref motionVectors, ref destination);
}
#endregion
#region STP
private const string _UpscaledColorTargetName = "_UpscaledColorTarget";
private void RenderSTP(RenderGraph renderGraph, UniversalResourceData resourceData, UniversalCameraData cameraData, ref TextureHandle source, out TextureHandle destination)
{
TextureHandle cameraDepth = resourceData.cameraDepthTexture;
TextureHandle motionVectors = resourceData.motionVectorColor;
Debug.Assert(motionVectors.IsValid(), "MotionVectors are invalid. STP requires a motion vector texture.");
var desc = GetCompatibleDescriptor(cameraData.cameraTargetDescriptor,
cameraData.pixelWidth,
cameraData.pixelHeight,
cameraData.cameraTargetDescriptor.graphicsFormat);
// STP uses compute shaders so all render textures must enable random writes
desc.enableRandomWrite = true;
// Avoid enabling sRGB because STP works with compute shaders which can't output sRGB automatically.
desc.sRGB = false;
destination = UniversalRenderer.CreateRenderGraphTexture(renderGraph, desc, _UpscaledColorTargetName, false, FilterMode.Bilinear);
int frameIndex = Time.frameCount;
var noiseTexture = m_Data.textures.blueNoise16LTex[frameIndex & (m_Data.textures.blueNoise16LTex.Length - 1)];
StpUtils.Execute(renderGraph, resourceData, cameraData, source, cameraDepth, motionVectors, destination, noiseTexture);
// Update the camera resolution to reflect the upscaled size
UpdateCameraResolution(renderGraph, cameraData, new Vector2Int(desc.width, desc.height));
}
#endregion
#region MotionBlur
private class MotionBlurPassData
{
internal TextureHandle destinationTexture;
internal TextureHandle sourceTexture;
internal TextureHandle motionVectors;
internal Material material;
internal int passIndex;
internal Camera camera;
internal XRPass xr;
internal float intensity;
internal float clamp;
internal bool enableAlphaOutput;
}
public void RenderMotionBlur(RenderGraph renderGraph, UniversalResourceData resourceData, UniversalCameraData cameraData, in TextureHandle source, out TextureHandle destination)
{
var material = m_Materials.cameraMotionBlur;
var desc = PostProcessPass.GetCompatibleDescriptor(m_Descriptor,
m_Descriptor.width,
m_Descriptor.height,
m_Descriptor.graphicsFormat,
GraphicsFormat.None);
destination = UniversalRenderer.CreateRenderGraphTexture(renderGraph, desc, "_MotionBlurTarget", true, FilterMode.Bilinear);
TextureHandle motionVectorColor = resourceData.motionVectorColor;
TextureHandle cameraDepthTexture = resourceData.cameraDepthTexture;
var mode = m_MotionBlur.mode.value;
int passIndex = (int)m_MotionBlur.quality.value;
passIndex += (mode == MotionBlurMode.CameraAndObjects) ? 3 : 0;
using (var builder = renderGraph.AddRasterRenderPass<MotionBlurPassData>("Motion Blur", out var passData, ProfilingSampler.Get(URPProfileId.RG_MotionBlur)))
{
builder.AllowGlobalStateModification(true);
passData.destinationTexture = destination;
builder.SetRenderAttachment(destination, 0, AccessFlags.Write);
passData.sourceTexture = source;
builder.UseTexture(source, AccessFlags.Read);
if (mode == MotionBlurMode.CameraAndObjects)
{
Debug.Assert(ScriptableRenderer.current.SupportsMotionVectors(), "Current renderer does not support motion vectors.");
Debug.Assert(motionVectorColor.IsValid(), "Motion vectors are invalid. Per-object motion blur requires a motion vector texture.");
passData.motionVectors = motionVectorColor;
builder.UseTexture(motionVectorColor, AccessFlags.Read);
}
else
{
passData.motionVectors = TextureHandle.nullHandle;
}
Debug.Assert(cameraDepthTexture.IsValid(), "Camera depth texture is invalid. Per-camera motion blur requires a depth texture.");
builder.UseTexture(cameraDepthTexture, AccessFlags.Read);
passData.material = material;
passData.passIndex = passIndex;
passData.camera = cameraData.camera;
passData.xr = cameraData.xr;
passData.enableAlphaOutput = cameraData.isAlphaOutputEnabled;
passData.intensity = m_MotionBlur.intensity.value;
passData.clamp = m_MotionBlur.clamp.value;
builder.SetRenderFunc(static (MotionBlurPassData data, RasterGraphContext context) =>
{
var cmd = context.cmd;
RTHandle sourceTextureHdl = data.sourceTexture;
UpdateMotionBlurMatrices(ref data.material, data.camera, data.xr);
data.material.SetFloat("_Intensity", data.intensity);
data.material.SetFloat("_Clamp", data.clamp);
CoreUtils.SetKeyword(data.material, ShaderKeywordStrings._ENABLE_ALPHA_OUTPUT, data.enableAlphaOutput);
PostProcessUtils.SetSourceSize(cmd, data.sourceTexture);
Vector2 viewportScale = sourceTextureHdl.useScaling ? new Vector2(sourceTextureHdl.rtHandleProperties.rtHandleScale.x, sourceTextureHdl.rtHandleProperties.rtHandleScale.y) : Vector2.one;
Blitter.BlitTexture(cmd, sourceTextureHdl, viewportScale, data.material, data.passIndex);
});
return;
}
}
#endregion
#region LensFlareDataDriven
private class LensFlarePassData
{
internal TextureHandle destinationTexture;
internal RenderTextureDescriptor sourceDescriptor;
internal UniversalCameraData cameraData;
internal Material material;
internal Rect viewport;
internal float paniniDistance;
internal float paniniCropToFit;
internal float width;
internal float height;
internal bool usePanini;
}
void LensFlareDataDrivenComputeOcclusion(RenderGraph renderGraph, UniversalResourceData resourceData, UniversalCameraData cameraData)
{
if (!LensFlareCommonSRP.IsOcclusionRTCompatible())
return;
using (var builder = renderGraph.AddUnsafePass<LensFlarePassData>("Lens Flare Compute Occlusion", out var passData, ProfilingSampler.Get(URPProfileId.LensFlareDataDrivenComputeOcclusion)))
{
RTHandle occH = LensFlareCommonSRP.occlusionRT;
TextureHandle occlusionHandle = renderGraph.ImportTexture(LensFlareCommonSRP.occlusionRT);
passData.destinationTexture = occlusionHandle;
builder.UseTexture(occlusionHandle, AccessFlags.Write);
passData.cameraData = cameraData;
passData.viewport = cameraData.pixelRect;
passData.material = m_Materials.lensFlareDataDriven;
passData.width = (float)m_Descriptor.width;
passData.height = (float)m_Descriptor.height;
if (m_PaniniProjection.IsActive())
{
passData.usePanini = true;
passData.paniniDistance = m_PaniniProjection.distance.value;
passData.paniniCropToFit = m_PaniniProjection.cropToFit.value;
}
else
{
passData.usePanini = false;
passData.paniniDistance = 1.0f;
passData.paniniCropToFit = 1.0f;
}
builder.UseTexture(resourceData.cameraDepthTexture, AccessFlags.Read);
builder.SetRenderFunc(
static (LensFlarePassData data, UnsafeGraphContext ctx) =>
{
Camera camera = data.cameraData.camera;
XRPass xr = data.cameraData.xr;
Matrix4x4 nonJitteredViewProjMatrix0;
int xrId0;
#if ENABLE_VR && ENABLE_XR_MODULE
// Not VR or Multi-Pass
if (xr.enabled)
{
if (xr.singlePassEnabled)
{
nonJitteredViewProjMatrix0 = GL.GetGPUProjectionMatrix(data.cameraData.GetProjectionMatrixNoJitter(0), true) * data.cameraData.GetViewMatrix(0);
xrId0 = 0;
}
else
{
var gpuNonJitteredProj = GL.GetGPUProjectionMatrix(camera.projectionMatrix, true);
nonJitteredViewProjMatrix0 = gpuNonJitteredProj * camera.worldToCameraMatrix;
xrId0 = data.cameraData.xr.multipassId;
}
}
else
{
nonJitteredViewProjMatrix0 = GL.GetGPUProjectionMatrix(data.cameraData.GetProjectionMatrixNoJitter(0), true) * data.cameraData.GetViewMatrix(0);
xrId0 = 0;
}
#else
var gpuNonJitteredProj = GL.GetGPUProjectionMatrix(camera.projectionMatrix, true);
nonJitteredViewProjMatrix0 = gpuNonJitteredProj * camera.worldToCameraMatrix;
xrId0 = xr.multipassId;
#endif
LensFlareCommonSRP.ComputeOcclusion(
data.material, camera, xr, xr.multipassId,
data.width, data.height,
data.usePanini, data.paniniDistance, data.paniniCropToFit, true,
camera.transform.position,
nonJitteredViewProjMatrix0,
ctx.cmd,
false, false, null, null);
#if ENABLE_VR && ENABLE_XR_MODULE
if (xr.enabled && xr.singlePassEnabled)
{
//ctx.cmd.SetGlobalTexture(m_Depth.name, m_Depth.nameID);
for (int xrIdx = 1; xrIdx < xr.viewCount; ++xrIdx)
{
Matrix4x4 gpuVPXR = GL.GetGPUProjectionMatrix(data.cameraData.GetProjectionMatrixNoJitter(xrIdx), true) * data.cameraData.GetViewMatrix(xrIdx);
// Bypass single pass version
LensFlareCommonSRP.ComputeOcclusion(
data.material, camera, xr, xrIdx,
data.width, data.height,
data.usePanini, data.paniniDistance, data.paniniCropToFit, true,
camera.transform.position,
gpuVPXR,
ctx.cmd,
false, false, null, null);
}
}
#endif
});
}
}
public void RenderLensFlareDataDriven(RenderGraph renderGraph, UniversalResourceData resourceData, UniversalCameraData cameraData, in TextureHandle destination)
{
using (var builder = renderGraph.AddUnsafePass<LensFlarePassData>("Lens Flare Data Driven Pass", out var passData, ProfilingSampler.Get(URPProfileId.LensFlareDataDriven)))
{
// Use WriteTexture here because DoLensFlareDataDrivenCommon will call SetRenderTarget internally.
// TODO RENDERGRAPH: convert SRP core lens flare to be rendergraph friendly
passData.destinationTexture = destination;
builder.UseTexture(destination, AccessFlags.Write);
passData.sourceDescriptor = m_Descriptor;
passData.cameraData = cameraData;
passData.material = m_Materials.lensFlareDataDriven;
passData.width = (float)m_Descriptor.width;
passData.height = (float)m_Descriptor.height;
passData.viewport.x = 0.0f;
passData.viewport.y = 0.0f;
passData.viewport.width = (float)m_Descriptor.width;
passData.viewport.height = (float)m_Descriptor.height;
if (m_PaniniProjection.IsActive())
{
passData.usePanini = true;
passData.paniniDistance = m_PaniniProjection.distance.value;
passData.paniniCropToFit = m_PaniniProjection.cropToFit.value;
}
else
{
passData.usePanini = false;
passData.paniniDistance = 1.0f;
passData.paniniCropToFit = 1.0f;
}
if (LensFlareCommonSRP.IsOcclusionRTCompatible())
{
TextureHandle occlusionHandle = renderGraph.ImportTexture(LensFlareCommonSRP.occlusionRT);
builder.UseTexture(occlusionHandle, AccessFlags.Read);
}
else
{
builder.UseTexture(resourceData.cameraDepthTexture, AccessFlags.Read);
}
builder.SetRenderFunc(static (LensFlarePassData data, UnsafeGraphContext ctx) =>
{
Camera camera = data.cameraData.camera;
XRPass xr = data.cameraData.xr;
#if ENABLE_VR && ENABLE_XR_MODULE
// Not VR or Multi-Pass
if (!xr.enabled ||
(xr.enabled && !xr.singlePassEnabled))
#endif
{
var gpuNonJitteredProj = GL.GetGPUProjectionMatrix(camera.projectionMatrix, true);
Matrix4x4 nonJitteredViewProjMatrix0 = gpuNonJitteredProj * camera.worldToCameraMatrix;
LensFlareCommonSRP.DoLensFlareDataDrivenCommon(
data.material, data.cameraData.camera, data.viewport, xr, data.cameraData.xr.multipassId,
data.width, data.height,
data.usePanini, data.paniniDistance, data.paniniCropToFit,
true,
camera.transform.position,
nonJitteredViewProjMatrix0,
ctx.cmd,
false, false, null, null,
data.destinationTexture,
(Light light, Camera cam, Vector3 wo) => { return GetLensFlareLightAttenuation(light, cam, wo); },
false);
}
#if ENABLE_VR && ENABLE_XR_MODULE
else
{
for (int xrIdx = 0; xrIdx < xr.viewCount; ++xrIdx)
{
Matrix4x4 nonJitteredViewProjMatrix_k = GL.GetGPUProjectionMatrix(data.cameraData.GetProjectionMatrixNoJitter(xrIdx), true) * data.cameraData.GetViewMatrix(xrIdx);
LensFlareCommonSRP.DoLensFlareDataDrivenCommon(
data.material, data.cameraData.camera, data.viewport, xr, data.cameraData.xr.multipassId,
data.width, data.height,
data.usePanini, data.paniniDistance, data.paniniCropToFit,
true,
camera.transform.position,
nonJitteredViewProjMatrix_k,
ctx.cmd,
false, false, null, null,
data.destinationTexture,
(Light light, Camera cam, Vector3 wo) => { return GetLensFlareLightAttenuation(light, cam, wo); },
false);
}
}
#endif
});
}
}
#endregion
#region LensFlareScreenSpace
private class LensFlareScreenSpacePassData
{
internal TextureHandle destinationTexture;
internal TextureHandle streakTmpTexture;
internal TextureHandle streakTmpTexture2;
internal TextureHandle originalBloomTexture;
internal TextureHandle screenSpaceLensFlareBloomMipTexture;
internal TextureHandle result;
internal RenderTextureDescriptor sourceDescriptor;
internal Camera camera;
internal Material material;
internal ScreenSpaceLensFlare lensFlareScreenSpace;
internal int downsample;
}
public TextureHandle RenderLensFlareScreenSpace(RenderGraph renderGraph, Camera camera, in TextureHandle destination, TextureHandle originalBloomTexture, TextureHandle screenSpaceLensFlareBloomMipTexture, bool enableXR)
{
var downsample = (int) m_LensFlareScreenSpace.resolution.value;
int width = m_Descriptor.width / downsample;
int height = m_Descriptor.height / downsample;
var streakTextureDesc = GetCompatibleDescriptor(m_Descriptor, width, height, m_DefaultColorFormat);
var streakTmpTexture = UniversalRenderer.CreateRenderGraphTexture(renderGraph, streakTextureDesc, "_StreakTmpTexture", true, FilterMode.Bilinear);
var streakTmpTexture2 = UniversalRenderer.CreateRenderGraphTexture(renderGraph, streakTextureDesc, "_StreakTmpTexture2", true, FilterMode.Bilinear);
var resultTexture = UniversalRenderer.CreateRenderGraphTexture(renderGraph, streakTextureDesc, "Lens Flare Screen Space Result", true, FilterMode.Bilinear);
using (var builder = renderGraph.AddUnsafePass<LensFlareScreenSpacePassData>("Lens Flare Screen Space Pass", out var passData, ProfilingSampler.Get(URPProfileId.LensFlareScreenSpace)))
{
// Use WriteTexture here because DoLensFlareScreenSpaceCommon will call SetRenderTarget internally.
// TODO RENDERGRAPH: convert SRP core lensflare to be rendergraph friendly
passData.destinationTexture = destination;
builder.UseTexture(destination, AccessFlags.Write);
passData.streakTmpTexture = streakTmpTexture;
builder.UseTexture(streakTmpTexture, AccessFlags.ReadWrite);
passData.streakTmpTexture2 = streakTmpTexture2;
builder.UseTexture(streakTmpTexture2, AccessFlags.ReadWrite);
passData.screenSpaceLensFlareBloomMipTexture = screenSpaceLensFlareBloomMipTexture;
builder.UseTexture(screenSpaceLensFlareBloomMipTexture, AccessFlags.ReadWrite);
passData.originalBloomTexture = originalBloomTexture;
builder.UseTexture(originalBloomTexture, AccessFlags.ReadWrite);
passData.sourceDescriptor = m_Descriptor;
passData.camera = camera;
passData.material = m_Materials.lensFlareScreenSpace;
passData.lensFlareScreenSpace = m_LensFlareScreenSpace; // NOTE: reference, assumed constant until executed.
passData.downsample = downsample;
passData.result = resultTexture;
builder.UseTexture(resultTexture, AccessFlags.Write);
builder.SetRenderFunc(static (LensFlareScreenSpacePassData data, UnsafeGraphContext context) =>
{
var cmd = context.cmd;
var camera = data.camera;
var lensFlareScreenSpace = data.lensFlareScreenSpace;
LensFlareCommonSRP.DoLensFlareScreenSpaceCommon(
data.material,
camera,
(float)data.sourceDescriptor.width,
(float)data.sourceDescriptor.height,
data.lensFlareScreenSpace.tintColor.value,
data.originalBloomTexture,
data.screenSpaceLensFlareBloomMipTexture,
null, // We don't have any spectral LUT in URP
data.streakTmpTexture,
data.streakTmpTexture2,
new Vector4(
lensFlareScreenSpace.intensity.value,
lensFlareScreenSpace.firstFlareIntensity.value,
lensFlareScreenSpace.secondaryFlareIntensity.value,
lensFlareScreenSpace.warpedFlareIntensity.value),
new Vector4(
lensFlareScreenSpace.vignetteEffect.value,
lensFlareScreenSpace.startingPosition.value,
lensFlareScreenSpace.scale.value,
0), // Free slot, not used
new Vector4(
lensFlareScreenSpace.samples.value,
lensFlareScreenSpace.sampleDimmer.value,
lensFlareScreenSpace.chromaticAbberationIntensity.value,
0), // No need to pass a chromatic aberration sample count, hardcoded at 3 in shader
new Vector4(
lensFlareScreenSpace.streaksIntensity.value,
lensFlareScreenSpace.streaksLength.value,
lensFlareScreenSpace.streaksOrientation.value,
lensFlareScreenSpace.streaksThreshold.value),
new Vector4(
data.downsample,
lensFlareScreenSpace.warpedFlareScale.value.x,
lensFlareScreenSpace.warpedFlareScale.value.y,
0), // Free slot, not used
cmd,
data.result,
false);
});
return passData.originalBloomTexture;
}
}
#endregion
static private void ScaleViewportAndBlit(RasterCommandBuffer cmd, RTHandle sourceTextureHdl, RTHandle dest, UniversalCameraData cameraData, Material material)
{
Vector4 scaleBias = RenderingUtils.GetFinalBlitScaleBias(sourceTextureHdl, dest, cameraData);
RenderTargetIdentifier cameraTarget = BuiltinRenderTextureType.CameraTarget;
#if ENABLE_VR && ENABLE_XR_MODULE
if (cameraData.xr.enabled)
cameraTarget = cameraData.xr.renderTarget;
#endif
if (dest.nameID == cameraTarget || cameraData.targetTexture != null)
cmd.SetViewport(cameraData.pixelRect);
Blitter.BlitTexture(cmd, sourceTextureHdl, scaleBias, material, 0);
}
#region FinalPass
private class PostProcessingFinalSetupPassData
{
internal TextureHandle destinationTexture;
internal TextureHandle sourceTexture;
internal Material material;
internal UniversalCameraData cameraData;
}
public void RenderFinalSetup(RenderGraph renderGraph, UniversalCameraData cameraData, in TextureHandle source, in TextureHandle destination, ref FinalBlitSettings settings)
{
// Scaled FXAA
using (var builder = renderGraph.AddRasterRenderPass<PostProcessingFinalSetupPassData>("Postprocessing Final Setup Pass", out var passData, ProfilingSampler.Get(URPProfileId.RG_FinalSetup)))
{
Material material = m_Materials.scalingSetup;
if (settings.isFxaaEnabled)
material.EnableKeyword(ShaderKeywordStrings.Fxaa);
if (settings.isFsrEnabled)
material.EnableKeyword(settings.hdrOperations.HasFlag(HDROutputUtils.Operation.ColorEncoding) ? ShaderKeywordStrings.Gamma20AndHDRInput : ShaderKeywordStrings.Gamma20);
if (settings.hdrOperations.HasFlag(HDROutputUtils.Operation.ColorEncoding))
SetupHDROutput(cameraData.hdrDisplayInformation, cameraData.hdrDisplayColorGamut, material, settings.hdrOperations, cameraData.rendersOverlayUI);
if (settings.isAlphaOutputEnabled)
CoreUtils.SetKeyword(material, ShaderKeywordStrings._ENABLE_ALPHA_OUTPUT, settings.isAlphaOutputEnabled);
builder.AllowGlobalStateModification(true);
passData.destinationTexture = destination;
builder.SetRenderAttachment(destination, 0, AccessFlags.Write);
passData.sourceTexture = source;
builder.UseTexture(source, AccessFlags.Read);
passData.cameraData = cameraData;
passData.material = material;
builder.SetRenderFunc(static (PostProcessingFinalSetupPassData data, RasterGraphContext context) =>
{
var cmd = context.cmd;
RTHandle sourceTextureHdl = data.sourceTexture;
PostProcessUtils.SetSourceSize(cmd, sourceTextureHdl);
ScaleViewportAndBlit(context.cmd, sourceTextureHdl, data.destinationTexture, data.cameraData, data.material);
});
return;
}
}
private class PostProcessingFinalFSRScalePassData
{
internal TextureHandle destinationTexture;
internal TextureHandle sourceTexture;
internal Material material;
internal bool enableAlphaOutput;
}
public void RenderFinalFSRScale(RenderGraph renderGraph, in TextureHandle source, in TextureHandle destination, bool enableAlphaOutput)
{
// FSR upscale
m_Materials.easu.shaderKeywords = null;
using (var builder = renderGraph.AddRasterRenderPass<PostProcessingFinalFSRScalePassData>("Postprocessing Final FSR Scale Pass", out var passData, ProfilingSampler.Get(URPProfileId.RG_FinalFSRScale)))
{
builder.AllowGlobalStateModification(true);
passData.destinationTexture = destination;
builder.SetRenderAttachment(destination, 0, AccessFlags.Write);
passData.sourceTexture = source;
builder.UseTexture(source, AccessFlags.Read);
passData.material = m_Materials.easu;
passData.enableAlphaOutput = enableAlphaOutput;
builder.SetRenderFunc(static (PostProcessingFinalFSRScalePassData data, RasterGraphContext context) =>
{
var cmd = context.cmd;
var sourceTex = data.sourceTexture;
var destTex = data.destinationTexture;
var material = data.material;
var enableAlphaOutput = data.enableAlphaOutput;
RTHandle sourceHdl = (RTHandle)sourceTex;
RTHandle destHdl = (RTHandle)destTex;
var fsrInputSize = new Vector2(sourceHdl.referenceSize.x, sourceHdl.referenceSize.y);
var fsrOutputSize = new Vector2(destHdl.referenceSize.x, destHdl.referenceSize.y);
FSRUtils.SetEasuConstants(cmd, fsrInputSize, fsrInputSize, fsrOutputSize);
CoreUtils.SetKeyword(material, ShaderKeywordStrings._ENABLE_ALPHA_OUTPUT, enableAlphaOutput);
Vector2 viewportScale = sourceHdl.useScaling ? new Vector2(sourceHdl.rtHandleProperties.rtHandleScale.x, sourceHdl.rtHandleProperties.rtHandleScale.y) : Vector2.one;
Blitter.BlitTexture(cmd, sourceHdl, viewportScale, material, 0);
});
return;
}
}
private class PostProcessingFinalBlitPassData
{
internal TextureHandle destinationTexture;
internal TextureHandle sourceTexture;
internal Material material;
internal UniversalCameraData cameraData;
internal FinalBlitSettings settings;
}
/// <summary>
/// Final blit settings.
/// </summary>
public struct FinalBlitSettings
{
/// <summary>Is FXAA enabled</summary>
public bool isFxaaEnabled;
/// <summary>Is FSR Enabled.</summary>
public bool isFsrEnabled;
/// <summary>Is TAA sharpening enabled.</summary>
public bool isTaaSharpeningEnabled;
/// <summary>True if final blit requires HDR output.</summary>
public bool requireHDROutput;
/// <summary>True if final blit needs to resolve to debug screen.</summary>
public bool resolveToDebugScreen;
/// <summary>True if final blit needs to output alpha channel.</summary>
public bool isAlphaOutputEnabled;
/// <summary>HDR Operations</summary>
public HDROutputUtils.Operation hdrOperations;
/// <summary>
/// Create FinalBlitSettings
/// </summary>
/// <returns>New FinalBlitSettings</returns>
public static FinalBlitSettings Create()
{
FinalBlitSettings s = new FinalBlitSettings();
s.isFxaaEnabled = false;
s.isFsrEnabled = false;
s.isTaaSharpeningEnabled = false;
s.requireHDROutput = false;
s.resolveToDebugScreen = false;
s.isAlphaOutputEnabled = false;
s.hdrOperations = HDROutputUtils.Operation.None;
return s;
}
};
public void RenderFinalBlit(RenderGraph renderGraph, UniversalCameraData cameraData, in TextureHandle source, in TextureHandle overlayUITexture, in TextureHandle postProcessingTarget, ref FinalBlitSettings settings)
{
using (var builder = renderGraph.AddRasterRenderPass<PostProcessingFinalBlitPassData>("Postprocessing Final Blit Pass", out var passData, ProfilingSampler.Get(URPProfileId.RG_FinalBlit)))
{
builder.AllowGlobalStateModification(true);
passData.destinationTexture = postProcessingTarget;
builder.SetRenderAttachment(postProcessingTarget, 0, AccessFlags.Write);
passData.sourceTexture = source;
builder.UseTexture(source, AccessFlags.Read);
passData.cameraData = cameraData;
passData.material = m_Materials.finalPass;
passData.settings = settings;
if (settings.requireHDROutput && m_EnableColorEncodingIfNeeded)
builder.UseTexture(overlayUITexture, AccessFlags.Read);
#if ENABLE_VR && ENABLE_XR_MODULE
if (cameraData.xr.enabled)
{
// This is a screen-space pass, make sure foveated rendering is disabled for non-uniform renders
bool passSupportsFoveation = !XRSystem.foveatedRenderingCaps.HasFlag(FoveatedRenderingCaps.NonUniformRaster);
builder.EnableFoveatedRasterization(cameraData.xr.supportsFoveatedRendering && passSupportsFoveation);
}
#endif
builder.SetRenderFunc(static (PostProcessingFinalBlitPassData data, RasterGraphContext context) =>
{
var cmd = context.cmd;
var material = data.material;
var isFxaaEnabled = data.settings.isFxaaEnabled;
var isFsrEnabled = data.settings.isFsrEnabled;
var isRcasEnabled = data.settings.isTaaSharpeningEnabled;
var requireHDROutput = data.settings.requireHDROutput;
var resolveToDebugScreen = data.settings.resolveToDebugScreen;
var isAlphaOutputEnabled = data.settings.isAlphaOutputEnabled;
RTHandle sourceTextureHdl = data.sourceTexture;
RTHandle destinationTextureHdl = data.destinationTexture;
PostProcessUtils.SetSourceSize(cmd, data.sourceTexture);
if (isFxaaEnabled)
material.EnableKeyword(ShaderKeywordStrings.Fxaa);
if (isFsrEnabled)
{
// RCAS
// Use the override value if it's available, otherwise use the default.
float sharpness = data.cameraData.fsrOverrideSharpness ? data.cameraData.fsrSharpness : FSRUtils.kDefaultSharpnessLinear;
// Set up the parameters for the RCAS pass unless the sharpness value indicates that it wont have any effect.
if (data.cameraData.fsrSharpness > 0.0f)
{
// RCAS is performed during the final post blit, but we set up the parameters here for better logical grouping.
material.EnableKeyword(requireHDROutput ? ShaderKeywordStrings.EasuRcasAndHDRInput : ShaderKeywordStrings.Rcas);
FSRUtils.SetRcasConstantsLinear(cmd, sharpness);
}
}
else if (isRcasEnabled) // RCAS only
{
// Reuse RCAS as a standalone sharpening filter for TAA.
// If FSR is enabled then it overrides the sharpening/TAA setting and we skip it.
material.EnableKeyword(ShaderKeywordStrings.Rcas);
FSRUtils.SetRcasConstantsLinear(cmd, data.cameraData.taaSettings.contrastAdaptiveSharpening);
}
if (isAlphaOutputEnabled)
CoreUtils.SetKeyword(material, ShaderKeywordStrings._ENABLE_ALPHA_OUTPUT, isAlphaOutputEnabled);
bool isRenderToBackBufferTarget = !data.cameraData.isSceneViewCamera;
#if ENABLE_VR && ENABLE_XR_MODULE
if (data.cameraData.xr.enabled)
isRenderToBackBufferTarget = destinationTextureHdl == data.cameraData.xr.renderTarget;
#endif
// HDR debug views force-renders to DebugScreenTexture.
isRenderToBackBufferTarget &= !resolveToDebugScreen;
Vector2 viewportScale = sourceTextureHdl.useScaling ? new Vector2(sourceTextureHdl.rtHandleProperties.rtHandleScale.x, sourceTextureHdl.rtHandleProperties.rtHandleScale.y) : Vector2.one;
// We y-flip if
// 1) we are blitting from render texture to back buffer(UV starts at bottom) and
// 2) renderTexture starts UV at top
bool yflip = isRenderToBackBufferTarget && data.cameraData.targetTexture == null && SystemInfo.graphicsUVStartsAtTop;
Vector4 scaleBias = yflip ? new Vector4(viewportScale.x, -viewportScale.y, 0, viewportScale.y) : new Vector4(viewportScale.x, viewportScale.y, 0, 0);
cmd.SetViewport(data.cameraData.pixelRect);
Blitter.BlitTexture(cmd, sourceTextureHdl, scaleBias, material, 0);
});
return;
}
}
public void RenderFinalPassRenderGraph(RenderGraph renderGraph, ContextContainer frameData, in TextureHandle source, in TextureHandle overlayUITexture, in TextureHandle postProcessingTarget, bool enableColorEncodingIfNeeded)
{
var stack = VolumeManager.instance.stack;
m_Tonemapping = stack.GetComponent<Tonemapping>();
m_FilmGrain = stack.GetComponent<FilmGrain>();
m_Tonemapping = stack.GetComponent<Tonemapping>();
UniversalCameraData cameraData = frameData.Get<UniversalCameraData>();
var material = m_Materials.finalPass;
material.shaderKeywords = null;
FinalBlitSettings settings = FinalBlitSettings.Create();
// TODO RENDERGRAPH: when we remove the old path we should review the naming of these variables...
// m_HasFinalPass is used to let FX passes know when they are not being called by the actual final pass, so they can skip any "final work"
m_HasFinalPass = false;
// m_IsFinalPass is used by effects called by RenderFinalPassRenderGraph, so we let them know that we are in a final PP pass
m_IsFinalPass = true;
m_EnableColorEncodingIfNeeded = enableColorEncodingIfNeeded;
if (m_FilmGrain.IsActive())
{
material.EnableKeyword(ShaderKeywordStrings.FilmGrain);
PostProcessUtils.ConfigureFilmGrain(
m_Data,
m_FilmGrain,
cameraData.pixelWidth, cameraData.pixelHeight,
material
);
}
if (cameraData.isDitheringEnabled)
{
material.EnableKeyword(ShaderKeywordStrings.Dithering);
m_DitheringTextureIndex = PostProcessUtils.ConfigureDithering(
m_Data,
m_DitheringTextureIndex,
cameraData.pixelWidth, cameraData.pixelHeight,
material
);
}
if (RequireSRGBConversionBlitToBackBuffer(cameraData.requireSrgbConversion))
material.EnableKeyword(ShaderKeywordStrings.LinearToSRGBConversion);
settings.hdrOperations = HDROutputUtils.Operation.None;
settings.requireHDROutput = RequireHDROutput(cameraData);
if (settings.requireHDROutput)
{
// If there is a final post process pass, it's always the final pass so do color encoding
settings.hdrOperations = m_EnableColorEncodingIfNeeded ? HDROutputUtils.Operation.ColorEncoding : HDROutputUtils.Operation.None;
// If the color space conversion wasn't applied by the uber pass, do it here
if (!cameraData.postProcessEnabled)
settings.hdrOperations |= HDROutputUtils.Operation.ColorConversion;
SetupHDROutput(cameraData.hdrDisplayInformation, cameraData.hdrDisplayColorGamut, material, settings.hdrOperations, cameraData.rendersOverlayUI);
}
DebugHandler debugHandler = GetActiveDebugHandler(cameraData);
bool resolveToDebugScreen = debugHandler != null && debugHandler.WriteToDebugScreenTexture(cameraData.resolveFinalTarget);
debugHandler?.UpdateShaderGlobalPropertiesForFinalValidationPass(renderGraph, cameraData, !m_HasFinalPass && !resolveToDebugScreen);
settings.isAlphaOutputEnabled = cameraData.isAlphaOutputEnabled;
settings.isFxaaEnabled = (cameraData.antialiasing == AntialiasingMode.FastApproximateAntialiasing);
settings.isFsrEnabled = ((cameraData.imageScalingMode == ImageScalingMode.Upscaling) && (cameraData.upscalingFilter == ImageUpscalingFilter.FSR));
// Reuse RCAS pass as an optional standalone post sharpening pass for TAA.
// This avoids the cost of EASU and is available for other upscaling options.
// If FSR is enabled then FSR settings override the TAA settings and we perform RCAS only once.
// If STP is enabled, then TAA sharpening has already been performed inside STP.
settings.isTaaSharpeningEnabled = (cameraData.IsTemporalAAEnabled() && cameraData.taaSettings.contrastAdaptiveSharpening > 0.0f) && !settings.isFsrEnabled && !cameraData.IsSTPEnabled();
var tempRtDesc = cameraData.cameraTargetDescriptor;
tempRtDesc.msaaSamples = 1;
tempRtDesc.depthStencilFormat = GraphicsFormat.None;
// Select a UNORM format since we've already performed tonemapping. (Values are in 0-1 range)
// This improves precision and is required if we want to avoid excessive banding when FSR is in use.
if (!settings.requireHDROutput)
tempRtDesc.graphicsFormat = UniversalRenderPipeline.MakeUnormRenderTextureGraphicsFormat();
var scalingSetupTarget = UniversalRenderer.CreateRenderGraphTexture(renderGraph, tempRtDesc, "scalingSetupTarget", true, FilterMode.Point);
var upscaleRtDesc = cameraData.cameraTargetDescriptor;
upscaleRtDesc.msaaSamples = 1;
upscaleRtDesc.depthStencilFormat = GraphicsFormat.None;
upscaleRtDesc.width = cameraData.pixelWidth;
upscaleRtDesc.height = cameraData.pixelHeight;
var upScaleTarget = UniversalRenderer.CreateRenderGraphTexture(renderGraph, upscaleRtDesc, "_UpscaledTexture", true, FilterMode.Point);
var currentSource = source;
if (cameraData.imageScalingMode != ImageScalingMode.None)
{
// When FXAA is enabled in scaled renders, we execute it in a separate blit since it's not designed to be used in
// situations where the input and output resolutions do not match.
// When FSR is active, we always need an additional pass since it has a very particular color encoding requirement.
// NOTE: An ideal implementation could inline this color conversion logic into the UberPost pass, but the current code structure would make
// this process very complex. Specifically, we'd need to guarantee that the uber post output is always written to a UNORM format render
// target in order to preserve the precision of specially encoded color data.
bool isSetupRequired = (settings.isFxaaEnabled || settings.isFsrEnabled);
// When FXAA is needed while scaling is active, we must perform it before the scaling takes place.
if (isSetupRequired)
{
RenderFinalSetup(renderGraph, cameraData, in currentSource, in scalingSetupTarget, ref settings);
currentSource = scalingSetupTarget;
// Indicate that we no longer need to perform FXAA in the final pass since it was already perfomed here.
settings.isFxaaEnabled = false;
}
switch (cameraData.imageScalingMode)
{
case ImageScalingMode.Upscaling:
{
switch (cameraData.upscalingFilter)
{
case ImageUpscalingFilter.Point:
{
// TAA post sharpening is an RCAS pass, avoid overriding it with point sampling.
if (!settings.isTaaSharpeningEnabled)
material.EnableKeyword(ShaderKeywordStrings.PointSampling);
break;
}
case ImageUpscalingFilter.Linear:
{
break;
}
case ImageUpscalingFilter.FSR:
{
RenderFinalFSRScale(renderGraph, in currentSource, in upScaleTarget, settings.isAlphaOutputEnabled);
currentSource = upScaleTarget;
break;
}
}
break;
}
case ImageScalingMode.Downscaling:
{
// In the downscaling case, we don't perform any sort of filter override logic since we always want linear filtering
// and it's already the default option in the shader.
// Also disable TAA post sharpening pass when downscaling.
settings.isTaaSharpeningEnabled = false;
break;
}
}
}
else if (settings.isFxaaEnabled)
{
// In unscaled renders, FXAA can be safely performed in the FinalPost shader
material.EnableKeyword(ShaderKeywordStrings.Fxaa);
}
RenderFinalBlit(renderGraph, cameraData, in currentSource, in overlayUITexture, in postProcessingTarget, ref settings);
}
#endregion
#region UberPost
private class UberPostPassData
{
internal TextureHandle destinationTexture;
internal TextureHandle sourceTexture;
internal TextureHandle lutTexture;
internal Vector4 lutParams;
internal TextureHandle userLutTexture;
internal Vector4 userLutParams;
internal Material material;
internal UniversalCameraData cameraData;
internal TonemappingMode toneMappingMode;
internal bool isHdrGrading;
internal bool isBackbuffer;
internal bool enableAlphaOutput;
}
TextureHandle TryGetCachedUserLutTextureHandle(RenderGraph renderGraph)
{
if (m_ColorLookup.texture.value == null)
{
if (m_UserLut != null)
{
m_UserLut.Release();
m_UserLut = null;
}
}
else
{
if (m_UserLut == null || m_UserLut.externalTexture != m_ColorLookup.texture.value)
{
m_UserLut?.Release();
m_UserLut = RTHandles.Alloc(m_ColorLookup.texture.value);
}
}
return m_UserLut != null ? renderGraph.ImportTexture(m_UserLut) : TextureHandle.nullHandle;
}
public void RenderUberPost(RenderGraph renderGraph, ContextContainer frameData, UniversalCameraData cameraData, UniversalPostProcessingData postProcessingData, in TextureHandle sourceTexture, in TextureHandle destTexture, in TextureHandle lutTexture, in TextureHandle overlayUITexture, bool requireHDROutput, bool enableAlphaOutput, bool resolveToDebugScreen)
{
var material = m_Materials.uber;
bool hdrGrading = postProcessingData.gradingMode == ColorGradingMode.HighDynamicRange;
int lutHeight = postProcessingData.lutSize;
int lutWidth = lutHeight * lutHeight;
// Source material setup
float postExposureLinear = Mathf.Pow(2f, m_ColorAdjustments.postExposure.value);
Vector4 lutParams = new Vector4(1f / lutWidth, 1f / lutHeight, lutHeight - 1f, postExposureLinear);
TextureHandle userLutTexture = TryGetCachedUserLutTextureHandle(renderGraph);
Vector4 userLutParams = !m_ColorLookup.IsActive()
? Vector4.zero
: new Vector4(1f / m_ColorLookup.texture.value.width,
1f / m_ColorLookup.texture.value.height,
m_ColorLookup.texture.value.height - 1f,
m_ColorLookup.contribution.value);
using (var builder = renderGraph.AddRasterRenderPass<UberPostPassData>("Blit Post Processing", out var passData, ProfilingSampler.Get(URPProfileId.RG_UberPost)))
{
UniversalResourceData resourceData = frameData.Get<UniversalResourceData>();
#if ENABLE_VR && ENABLE_XR_MODULE
if (cameraData.xr.enabled)
{
bool passSupportsFoveation = cameraData.xrUniversal.canFoveateIntermediatePasses || resourceData.isActiveTargetBackBuffer;
// This is a screen-space pass, make sure foveated rendering is disabled for non-uniform renders
passSupportsFoveation &= !XRSystem.foveatedRenderingCaps.HasFlag(FoveatedRenderingCaps.NonUniformRaster);
builder.EnableFoveatedRasterization(cameraData.xr.supportsFoveatedRendering && passSupportsFoveation);
}
#endif
builder.AllowGlobalStateModification(true);
passData.destinationTexture = destTexture;
builder.SetRenderAttachment(destTexture, 0, AccessFlags.Write);
passData.sourceTexture = sourceTexture;
builder.UseTexture(sourceTexture, AccessFlags.Read);
passData.lutTexture = lutTexture;
builder.UseTexture(lutTexture, AccessFlags.Read);
passData.lutParams = lutParams;
if (userLutTexture.IsValid())
{
passData.userLutTexture = userLutTexture;
builder.UseTexture(userLutTexture, AccessFlags.Read);
}
if (m_Bloom.IsActive())
builder.UseTexture(_BloomMipUp[0], AccessFlags.Read);
if (requireHDROutput && m_EnableColorEncodingIfNeeded && overlayUITexture.IsValid())
builder.UseTexture(overlayUITexture, AccessFlags.Read);
passData.userLutParams = userLutParams;
passData.cameraData = cameraData;
passData.material = material;
passData.toneMappingMode = m_Tonemapping.mode.value;
passData.isHdrGrading = hdrGrading;
passData.enableAlphaOutput = enableAlphaOutput;
builder.SetRenderFunc(static (UberPostPassData data, RasterGraphContext context) =>
{
var cmd = context.cmd;
var camera = data.cameraData.camera;
var material = data.material;
RTHandle sourceTextureHdl = data.sourceTexture;
material.SetTexture(ShaderConstants._InternalLut, data.lutTexture);
material.SetVector(ShaderConstants._Lut_Params, data.lutParams);
material.SetTexture(ShaderConstants._UserLut, data.userLutTexture);
material.SetVector(ShaderConstants._UserLut_Params, data.userLutParams);
if (data.isHdrGrading)
{
material.EnableKeyword(ShaderKeywordStrings.HDRGrading);
}
else
{
switch (data.toneMappingMode)
{
case TonemappingMode.Neutral: material.EnableKeyword(ShaderKeywordStrings.TonemapNeutral); break;
case TonemappingMode.ACES: material.EnableKeyword(ShaderKeywordStrings.TonemapACES); break;
default: break; // None
}
}
CoreUtils.SetKeyword(material, ShaderKeywordStrings._ENABLE_ALPHA_OUTPUT, data.enableAlphaOutput);
// Done with Uber, blit it
ScaleViewportAndBlit(cmd, sourceTextureHdl, data.destinationTexture, data.cameraData, material);
});
return;
}
}
#endregion
private class PostFXSetupPassData { }
public void RenderPostProcessingRenderGraph(RenderGraph renderGraph, ContextContainer frameData, in TextureHandle activeCameraColorTexture, in TextureHandle lutTexture, in TextureHandle overlayUITexture, in TextureHandle postProcessingTarget, bool hasFinalPass, bool resolveToDebugScreen, bool enableColorEndingIfNeeded)
{
UniversalResourceData resourceData = frameData.Get<UniversalResourceData>();
UniversalRenderingData renderingData = frameData.Get<UniversalRenderingData>();
UniversalCameraData cameraData = frameData.Get<UniversalCameraData>();
UniversalPostProcessingData postProcessingData = frameData.Get<UniversalPostProcessingData>();
var stack = VolumeManager.instance.stack;
m_DepthOfField = stack.GetComponent<DepthOfField>();
m_MotionBlur = stack.GetComponent<MotionBlur>();
m_PaniniProjection = stack.GetComponent<PaniniProjection>();
m_Bloom = stack.GetComponent<Bloom>();
m_LensFlareScreenSpace = stack.GetComponent<ScreenSpaceLensFlare>();
m_LensDistortion = stack.GetComponent<LensDistortion>();
m_ChromaticAberration = stack.GetComponent<ChromaticAberration>();
m_Vignette = stack.GetComponent<Vignette>();
m_ColorLookup = stack.GetComponent<ColorLookup>();
m_ColorAdjustments = stack.GetComponent<ColorAdjustments>();
m_Tonemapping = stack.GetComponent<Tonemapping>();
m_FilmGrain = stack.GetComponent<FilmGrain>();
m_UseFastSRGBLinearConversion = postProcessingData.useFastSRGBLinearConversion;
m_SupportDataDrivenLensFlare = postProcessingData.supportDataDrivenLensFlare;
m_SupportScreenSpaceLensFlare = postProcessingData.supportScreenSpaceLensFlare;
m_Descriptor = cameraData.cameraTargetDescriptor;
m_Descriptor.useMipMap = false;
m_Descriptor.autoGenerateMips = false;
m_HasFinalPass = hasFinalPass;
m_EnableColorEncodingIfNeeded = enableColorEndingIfNeeded;
ref ScriptableRenderer renderer = ref cameraData.renderer;
bool isSceneViewCamera = cameraData.isSceneViewCamera;
//We blit back and forth without msaa untill the last blit.
bool useStopNan = cameraData.isStopNaNEnabled && m_Materials.stopNaN != null;
bool useSubPixelMorpAA = cameraData.antialiasing == AntialiasingMode.SubpixelMorphologicalAntiAliasing;
var dofMaterial = m_DepthOfField.mode.value == DepthOfFieldMode.Gaussian ? m_Materials.gaussianDepthOfField : m_Materials.bokehDepthOfField;
bool useDepthOfField = m_DepthOfField.IsActive() && !isSceneViewCamera && dofMaterial != null;
bool useLensFlare = !LensFlareCommonSRP.Instance.IsEmpty() && m_SupportDataDrivenLensFlare;
bool useLensFlareScreenSpace = m_LensFlareScreenSpace.IsActive() && m_SupportScreenSpaceLensFlare;
bool useMotionBlur = m_MotionBlur.IsActive() && !isSceneViewCamera;
bool usePaniniProjection = m_PaniniProjection.IsActive() && !isSceneViewCamera;
bool isFsrEnabled = ((cameraData.imageScalingMode == ImageScalingMode.Upscaling) && (cameraData.upscalingFilter == ImageUpscalingFilter.FSR));
// Disable MotionBlur in EditMode, so that editing remains clear and readable.
// NOTE: HDRP does the same via CoreUtils::AreAnimatedMaterialsEnabled().
// Disable MotionBlurMode.CameraAndObjects on renderers that do not support motion vectors
useMotionBlur = useMotionBlur && Application.isPlaying;
if (useMotionBlur && m_MotionBlur.mode.value == MotionBlurMode.CameraAndObjects)
{
useMotionBlur &= renderer.SupportsMotionVectors();
if (!useMotionBlur)
{
var warning = "Disabling Motion Blur for Camera And Objects because the renderer does not implement motion vectors.";
const int warningThrottleFrames = 60 * 1; // 60 FPS * 1 sec
if (Time.frameCount % warningThrottleFrames == 0)
Debug.LogWarning(warning);
}
}
// Note that enabling jitters uses the same CameraData::IsTemporalAAEnabled(). So if we add any other kind of overrides (like
// disable useTemporalAA if another feature is disabled) then we need to put it in CameraData::IsTemporalAAEnabled() as opposed
// to tweaking the value here.
bool useTemporalAA = cameraData.IsTemporalAAEnabled();
if (cameraData.antialiasing == AntialiasingMode.TemporalAntiAliasing && !useTemporalAA)
TemporalAA.ValidateAndWarn(cameraData);
// STP is only supported when TAA is enabled and all of its runtime requirements are met.
// See the comments for IsSTPEnabled() for more information.
bool useSTP = useTemporalAA && cameraData.IsSTPEnabled();
using (var builder = renderGraph.AddRasterRenderPass<PostFXSetupPassData>("Setup PostFX passes", out var passData,
ProfilingSampler.Get(URPProfileId.RG_SetupPostFX)))
{
// TODO RENDERGRAPH: properly setup dependencies between passes
builder.AllowPassCulling(false);
builder.AllowGlobalStateModification(true);
builder.SetRenderFunc(static (PostFXSetupPassData data, RasterGraphContext context) =>
{
// Setup projection matrix for cmd.DrawMesh()
context.cmd.SetGlobalMatrix(ShaderConstants._FullscreenProjMat, GL.GetGPUProjectionMatrix(Matrix4x4.identity, true));
});
}
TextureHandle currentSource = activeCameraColorTexture;
// Optional NaN killer before post-processing kicks in
// stopNaN may be null on Adreno 3xx. It doesn't support full shader level 3.5, but SystemInfo.graphicsShaderLevel is 35.
if (useStopNan)
{
RenderStopNaN(renderGraph, cameraData.cameraTargetDescriptor, in currentSource, out var stopNaNTarget);
currentSource = stopNaNTarget;
}
if(useSubPixelMorpAA)
{
RenderSMAA(renderGraph, resourceData, cameraData.antialiasingQuality, in currentSource, out var SMAATarget);
currentSource = SMAATarget;
}
// Depth of Field
// Adreno 3xx SystemInfo.graphicsShaderLevel is 35, but instancing support is disabled due to buggy drivers.
// DOF shader uses #pragma target 3.5 which adds requirement for instancing support, thus marking the shader unsupported on those devices.
if (useDepthOfField)
{
RenderDoF(renderGraph, resourceData, cameraData, in currentSource, out var DoFTarget);
currentSource = DoFTarget;
}
// Temporal Anti Aliasing
if (useTemporalAA)
{
if (useSTP)
{
RenderSTP(renderGraph, resourceData, cameraData, ref currentSource, out var StpTarget);
currentSource = StpTarget;
}
else
{
RenderTemporalAA(renderGraph, resourceData, cameraData, ref currentSource, out var TemporalAATarget);
currentSource = TemporalAATarget;
}
}
if(useMotionBlur)
{
RenderMotionBlur(renderGraph, resourceData, cameraData, in currentSource, out var MotionBlurTarget);
currentSource = MotionBlurTarget;
}
if(usePaniniProjection)
{
RenderPaniniProjection(renderGraph, cameraData.camera, in currentSource, out var PaniniTarget);
currentSource = PaniniTarget;
}
// Uberpost
{
// Reset uber keywords
m_Materials.uber.shaderKeywords = null;
// Bloom goes first
bool bloomActive = m_Bloom.IsActive();
//Even if bloom is not active we need the texture if the lensFlareScreenSpace pass is active.
if (bloomActive || useLensFlareScreenSpace)
{
RenderBloomTexture(renderGraph, currentSource, out var BloomTexture, cameraData.isAlphaOutputEnabled);
if (useLensFlareScreenSpace)
{
int maxBloomMip = Mathf.Clamp(m_LensFlareScreenSpace.bloomMip.value, 0, m_Bloom.maxIterations.value/2);
BloomTexture = RenderLensFlareScreenSpace(renderGraph, cameraData.camera, in currentSource, _BloomMipUp[0], _BloomMipUp[maxBloomMip], cameraData.xr.enabled);
}
UberPostSetupBloomPass(renderGraph, in BloomTexture, m_Materials.uber);
}
if (useLensFlare)
{
LensFlareDataDrivenComputeOcclusion(renderGraph, resourceData, cameraData);
RenderLensFlareDataDriven(renderGraph, resourceData, cameraData, in currentSource);
}
// TODO RENDERGRAPH: Once we started removing the non-RG code pass in URP, we should move functions below to renderfunc so that material setup happens at
// the same timeline of executing the rendergraph. Keep them here for now so we cound reuse non-RG code to reduce maintainance cost.
SetupLensDistortion(m_Materials.uber, isSceneViewCamera);
SetupChromaticAberration(m_Materials.uber);
SetupVignette(m_Materials.uber, cameraData.xr);
SetupGrain(cameraData, m_Materials.uber);
SetupDithering(cameraData, m_Materials.uber);
if (RequireSRGBConversionBlitToBackBuffer(cameraData.requireSrgbConversion))
m_Materials.uber.EnableKeyword(ShaderKeywordStrings.LinearToSRGBConversion);
if (m_UseFastSRGBLinearConversion)
{
m_Materials.uber.EnableKeyword(ShaderKeywordStrings.UseFastSRGBLinearConversion);
}
bool requireHDROutput = RequireHDROutput(cameraData);
if (requireHDROutput)
{
// Color space conversion is already applied through color grading, do encoding if uber post is the last pass
// Otherwise encoding will happen in the final post process pass or the final blit pass
HDROutputUtils.Operation hdrOperations = !m_HasFinalPass && m_EnableColorEncodingIfNeeded ? HDROutputUtils.Operation.ColorEncoding : HDROutputUtils.Operation.None;
SetupHDROutput(cameraData.hdrDisplayInformation, cameraData.hdrDisplayColorGamut, m_Materials.uber, hdrOperations, cameraData.rendersOverlayUI);
}
bool enableAlphaOutput = cameraData.isAlphaOutputEnabled;
DebugHandler debugHandler = GetActiveDebugHandler(cameraData);
debugHandler?.UpdateShaderGlobalPropertiesForFinalValidationPass(renderGraph, cameraData, !m_HasFinalPass && !resolveToDebugScreen);
RenderUberPost(renderGraph, frameData, cameraData, postProcessingData, in currentSource, in postProcessingTarget, in lutTexture, in overlayUITexture, requireHDROutput, enableAlphaOutput, resolveToDebugScreen);
}
}
}
}