UnityGame/Library/PackageCache/com.unity.collections/Unity.Collections/CollectionHelper.cs

675 lines
32 KiB
C#
Raw Normal View History

2024-10-27 10:53:47 +03:00
using System;
using System.Diagnostics;
using System.Runtime.InteropServices;
using Unity.Collections.LowLevel.Unsafe;
using Unity.Burst;
using Unity.Burst.CompilerServices;
using Unity.Jobs;
using Unity.Jobs.LowLevel.Unsafe;
using Unity.Mathematics;
using System.Reflection;
using System.Runtime.CompilerServices;
namespace Unity.Collections
{
/// <summary>
/// For scheduling release of unmanaged resources.
/// </summary>
public interface INativeDisposable : IDisposable
{
/// <summary>
/// Creates and schedules a job that will release all resources (memory and safety handles) of this collection.
/// </summary>
/// <param name="inputDeps">A job handle which the newly scheduled job will depend upon.</param>
/// <returns>The handle of a new job that will release all resources (memory and safety handles) of this collection.</returns>
JobHandle Dispose(JobHandle inputDeps);
}
/// <summary>
/// Provides helper methods for collections.
/// </summary>
[GenerateTestsForBurstCompatibility]
public static class CollectionHelper
{
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
internal static void CheckAllocator(AllocatorManager.AllocatorHandle allocator)
{
if (!ShouldDeallocate(allocator))
throw new ArgumentException($"Allocator {allocator} must not be None or Invalid");
}
/// <summary>
/// The size in bytes of the current platform's L1 cache lines.
/// </summary>
/// <value>The size in bytes of the current platform's L1 cache lines.</value>
public const int CacheLineSize = JobsUtility.CacheLineSize;
[StructLayout(LayoutKind.Explicit)]
internal struct LongDoubleUnion
{
[FieldOffset(0)]
internal long longValue;
[FieldOffset(0)]
internal double doubleValue;
}
/// <summary>
/// Returns the binary logarithm of the `value`, but the result is rounded down to the nearest integer.
/// </summary>
/// <param name="value">The value.</param>
/// <returns>The binary logarithm of the `value`, but the result is rounded down to the nearest integer.</returns>
public static int Log2Floor(int value)
{
return 31 - math.lzcnt((uint)value);
}
/// <summary>
/// Returns the binary logarithm of the `value`, but the result is rounded up to the nearest integer.
/// </summary>
/// <param name="value">The value.</param>
/// <returns>The binary logarithm of the `value`, but the result is rounded up to the nearest integer.</returns>
public static int Log2Ceil(int value)
{
return 32 - math.lzcnt((uint)value - 1);
}
/// <summary>
/// Returns an allocation size in bytes that factors in alignment.
/// </summary>
/// <example><code>
/// // 55 aligned to 16 is 64.
/// int size = CollectionHelper.Align(55, 16);
/// </code></example>
/// <param name="size">The size to align.</param>
/// <param name="alignmentPowerOfTwo">A non-zero, positive power of two.</param>
/// <returns>The smallest integer that is greater than or equal to `size` and is a multiple of `alignmentPowerOfTwo`.</returns>
/// <exception cref="ArgumentException">Thrown if `alignmentPowerOfTwo` is not a non-zero, positive power of two.</exception>
public static int Align(int size, int alignmentPowerOfTwo)
{
if (alignmentPowerOfTwo == 0)
return size;
CheckIntPositivePowerOfTwo(alignmentPowerOfTwo);
return (size + alignmentPowerOfTwo - 1) & ~(alignmentPowerOfTwo - 1);
}
/// <summary>
/// Returns an allocation size in bytes that factors in alignment.
/// </summary>
/// <example><code>
/// // 55 aligned to 16 is 64.
/// ulong size = CollectionHelper.Align(55, 16);
/// </code></example>
/// <param name="size">The size to align.</param>
/// <param name="alignmentPowerOfTwo">A non-zero, positive power of two.</param>
/// <returns>The smallest integer that is greater than or equal to `size` and is a multiple of `alignmentPowerOfTwo`.</returns>
/// <exception cref="ArgumentException">Thrown if `alignmentPowerOfTwo` is not a non-zero, positive power of two.</exception>
public static ulong Align(ulong size, ulong alignmentPowerOfTwo)
{
if (alignmentPowerOfTwo == 0)
return size;
CheckUlongPositivePowerOfTwo(alignmentPowerOfTwo);
return (size + alignmentPowerOfTwo - 1) & ~(alignmentPowerOfTwo - 1);
}
/// <summary>
/// Returns true if the address represented by the pointer has a given alignment.
/// </summary>
/// <param name="p">The pointer.</param>
/// <param name="alignmentPowerOfTwo">A non-zero, positive power of two.</param>
/// <returns>True if the address is a multiple of `alignmentPowerOfTwo`.</returns>
/// <exception cref="ArgumentException">Thrown if `alignmentPowerOfTwo` is not a non-zero, positive power of two.</exception>
public static unsafe bool IsAligned(void* p, int alignmentPowerOfTwo)
{
CheckIntPositivePowerOfTwo(alignmentPowerOfTwo);
return ((ulong)p & ((ulong)alignmentPowerOfTwo - 1)) == 0;
}
/// <summary>
/// Returns true if an offset has a given alignment.
/// </summary>
/// <param name="offset">An offset</param>
/// <param name="alignmentPowerOfTwo">A non-zero, positive power of two.</param>
/// <returns>True if the offset is a multiple of `alignmentPowerOfTwo`.</returns>
/// <exception cref="ArgumentException">Thrown if `alignmentPowerOfTwo` is not a non-zero, positive power of two.</exception>
public static bool IsAligned(ulong offset, int alignmentPowerOfTwo)
{
CheckIntPositivePowerOfTwo(alignmentPowerOfTwo);
return (offset & ((ulong)alignmentPowerOfTwo - 1)) == 0;
}
/// <summary>
/// Returns true if a positive value is a non-zero power of two.
/// </summary>
/// <remarks>Result is invalid if `value &lt; 0`.</remarks>
/// <param name="value">A positive value.</param>
/// <returns>True if the value is a non-zero, positive power of two.</returns>
public static bool IsPowerOfTwo(int value)
{
return (value & (value - 1)) == 0;
}
/// <summary>
/// Returns a (non-cryptographic) hash of a memory block.
/// </summary>
/// <remarks>The hash function used is [djb2](http://web.archive.org/web/20190508211657/http://www.cse.yorku.ca/~oz/hash.html).</remarks>
/// <param name="ptr">A buffer.</param>
/// <param name="bytes">The number of bytes to hash.</param>
/// <returns>A hash of the bytes.</returns>
public static unsafe uint Hash(void* ptr, int bytes)
{
// djb2 - Dan Bernstein hash function
// http://web.archive.org/web/20190508211657/http://www.cse.yorku.ca/~oz/hash.html
byte* str = (byte*)ptr;
ulong hash = 5381;
while (bytes > 0)
{
ulong c = str[--bytes];
hash = ((hash << 5) + hash) + c;
}
return (uint)hash;
}
[ExcludeFromBurstCompatTesting("Used only for debugging, and uses managed strings")]
internal static void WriteLayout(Type type)
{
Console.WriteLine($" Offset | Bytes | Name Layout: {0}", type.Name);
var fields = type.GetFields(BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance);
foreach (var field in fields)
{
Console.WriteLine(" {0, 6} | {1, 6} | {2}"
, Marshal.OffsetOf(type, field.Name)
, Marshal.SizeOf(field.FieldType)
, field.Name
);
}
}
internal static bool ShouldDeallocate(AllocatorManager.AllocatorHandle allocator)
{
// Allocator.Invalid == container is not initialized.
// Allocator.None == container is initialized, but container doesn't own data.
return allocator.ToAllocator > Allocator.None;
}
/// <summary>
/// Tell Burst that an integer can be assumed to map to an always positive value.
/// </summary>
/// <param name="value">The integer that is always positive.</param>
/// <returns>Returns `x`, but allows the compiler to assume it is always positive.</returns>
[return: AssumeRange(0, int.MaxValue)]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal static int AssumePositive(int value)
{
return value;
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
[GenerateTestsForBurstCompatibility(RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS", GenericTypeArguments = new[] { typeof(NativeArray<int>) })]
internal static void CheckIsUnmanaged<T>()
{
if (!UnsafeUtility.IsUnmanaged<T>())
{
throw new ArgumentException($"{typeof(T)} used in native collection is not blittable or not primitive");
}
}
#if ENABLE_UNITY_COLLECTIONS_CHECKS
[GenerateTestsForBurstCompatibility(RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS", GenericTypeArguments = new[] { typeof(NativeArray<int>) })]
internal static void InitNativeContainer<T>(AtomicSafetyHandle handle)
{
if (UnsafeUtility.IsNativeContainerType<T>())
AtomicSafetyHandle.SetNestedContainer(handle, true);
}
#endif
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
internal static void CheckIntPositivePowerOfTwo(int value)
{
var valid = (value > 0) && ((value & (value - 1)) == 0);
if (!valid)
{
throw new ArgumentException($"Alignment requested: {value} is not a non-zero, positive power of two.");
}
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
internal static void CheckUlongPositivePowerOfTwo(ulong value)
{
var valid = (value > 0) && ((value & (value - 1)) == 0);
if (!valid)
{
throw new ArgumentException($"Alignment requested: {value} is not a non-zero, positive power of two.");
}
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal static void CheckIndexInRange(int index, int length)
{
// This checks both < 0 and >= Length with one comparison
if ((uint)index >= (uint)length)
throw new IndexOutOfRangeException($"Index {index} is out of range in container of '{length}' Length.");
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
internal static void CheckCapacityInRange(int capacity, int length)
{
if (capacity < 0)
throw new ArgumentOutOfRangeException($"Capacity {capacity} must be positive.");
if (capacity < length)
throw new ArgumentOutOfRangeException($"Capacity {capacity} is out of range in container of '{length}' Length.");
}
/// <summary>
/// Create a NativeArray, using a provided allocator that implements IAllocator.
/// </summary>
/// <typeparam name="T">The type of the elements.</typeparam>
/// <typeparam name="U">The type of allocator.</typeparam>
/// <param name="length">The number of elements to allocate.</param>
/// <param name="allocator">The allocator to use.</param>
/// <param name="options">Options for allocation, such as whether to clear the memory.</param>
/// <returns>Returns the NativeArray that was created.</returns>
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int), typeof(AllocatorManager.AllocatorHandle) })]
public static NativeArray<T> CreateNativeArray<T, U>(int length, ref U allocator, NativeArrayOptions options = NativeArrayOptions.ClearMemory)
where T : unmanaged
where U : unmanaged, AllocatorManager.IAllocator
{
NativeArray<T> nativeArray;
if (!allocator.IsCustomAllocator)
{
nativeArray = new NativeArray<T>(length, allocator.ToAllocator, options);
}
else
{
nativeArray = new NativeArray<T>();
nativeArray.Initialize(length, ref allocator, options);
}
return nativeArray;
}
/// <summary>
/// Create a NativeArray, using a provided AllocatorHandle.
/// </summary>
/// <typeparam name="T">The type of the elements.</typeparam>
/// <param name="length">The number of elements to allocate.</param>
/// <param name="allocator">The AllocatorHandle to use.</param>
/// <param name="options">Options for allocation, such as whether to clear the memory.</param>
/// <returns>Returns the NativeArray that was created.</returns>
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int) })]
public static NativeArray<T> CreateNativeArray<T>(int length, AllocatorManager.AllocatorHandle allocator, NativeArrayOptions options = NativeArrayOptions.ClearMemory)
where T : unmanaged
{
NativeArray<T> nativeArray;
if(!AllocatorManager.IsCustomAllocator(allocator))
{
nativeArray = new NativeArray<T>(length, allocator.ToAllocator, options);
}
else
{
nativeArray = new NativeArray<T>();
nativeArray.Initialize(length, allocator, options);
}
return nativeArray;
}
/// <summary>
/// Create a NativeArray from another NativeArray, using a provided AllocatorHandle.
/// </summary>
/// <typeparam name="T">The type of the elements.</typeparam>
/// <param name="array">The NativeArray to make a copy of.</param>
/// <param name="allocator">The AllocatorHandle to use.</param>
/// <returns>Returns the NativeArray that was created.</returns>
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int) })]
public static NativeArray<T> CreateNativeArray<T>(NativeArray<T> array, AllocatorManager.AllocatorHandle allocator)
where T : unmanaged
{
NativeArray<T> nativeArray;
if (!AllocatorManager.IsCustomAllocator(allocator))
{
nativeArray = new NativeArray<T>(array, allocator.ToAllocator);
}
else
{
nativeArray = new NativeArray<T>();
nativeArray.Initialize(array.Length, allocator);
nativeArray.CopyFrom(array);
}
return nativeArray;
}
/// <summary>
/// Create a NativeArray from a managed array, using a provided AllocatorHandle.
/// </summary>
/// <typeparam name="T">The type of the elements.</typeparam>
/// <param name="array">The managed array to make a copy of.</param>
/// <param name="allocator">The AllocatorHandle to use.</param>
/// <returns>Returns the NativeArray that was created.</returns>
[ExcludeFromBurstCompatTesting("Managed array")]
public static NativeArray<T> CreateNativeArray<T>(T[] array, AllocatorManager.AllocatorHandle allocator)
where T : unmanaged
{
NativeArray<T> nativeArray;
if (!AllocatorManager.IsCustomAllocator(allocator))
{
nativeArray = new NativeArray<T>(array, allocator.ToAllocator);
}
else
{
nativeArray = new NativeArray<T>();
nativeArray.Initialize(array.Length, allocator);
nativeArray.CopyFrom(array);
}
return nativeArray;
}
/// <summary>
/// Create a NativeArray from a managed array, using a provided Allocator.
/// </summary>
/// <typeparam name="T">The type of the elements.</typeparam>
/// <typeparam name="U">The type of allocator.</typeparam>
/// <param name="array">The managed array to make a copy of.</param>
/// <param name="allocator">The Allocator to use.</param>
/// <returns>Returns the NativeArray that was created.</returns>
[ExcludeFromBurstCompatTesting("Managed array")]
public static NativeArray<T> CreateNativeArray<T, U>(T[] array, ref U allocator)
where T : unmanaged
where U : unmanaged, AllocatorManager.IAllocator
{
NativeArray<T> nativeArray;
if (!allocator.IsCustomAllocator)
{
nativeArray = new NativeArray<T>(array, allocator.ToAllocator);
}
else
{
nativeArray = new NativeArray<T>();
nativeArray.Initialize(array.Length, ref allocator);
nativeArray.CopyFrom(array);
}
return nativeArray;
}
/// <summary>
/// Dispose a NativeArray from an AllocatorHandle where it is allocated.
/// </summary>
/// <typeparam name="T">The type of the elements.</typeparam>
/// <param name="nativeArray">The NativeArray to make a copy of.</param>
/// <param name="allocator">The AllocatorHandle used to allocate the NativeArray.</param>
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int) })]
public static void DisposeNativeArray<T>(NativeArray<T> nativeArray, AllocatorManager.AllocatorHandle allocator)
where T : unmanaged
{
nativeArray.DisposeCheckAllocator();
}
/// <summary>
/// Dispose a NativeArray from an AllocatorHandle where it is allocated.
/// </summary>
/// <typeparam name="T">The type of the elements.</typeparam>
/// <param name="nativeArray">The NativeArray to be disposed.</param>
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int) })]
public static void Dispose<T>(NativeArray<T> nativeArray)
where T : unmanaged
{
nativeArray.DisposeCheckAllocator();
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
static void CheckConvertArguments<T>(int length) where T : unmanaged
{
if (length < 0)
throw new ArgumentOutOfRangeException(nameof(length), "Length must be >= 0");
if (!UnsafeUtility.IsUnmanaged<T>())
{
throw new InvalidOperationException(
$"{typeof(T)} used in NativeArray<{typeof(T)}> must be unmanaged (contain no managed types).");
}
}
#if ENABLE_UNITY_COLLECTIONS_CHECKS
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
static void InitNestedNativeContainer<T>(AtomicSafetyHandle handle)
where T : unmanaged
{
if (UnsafeUtility.IsNativeContainerType<T>())
{
AtomicSafetyHandle.SetNestedContainer(handle, true);
}
}
#endif
/// <summary>
/// Convert existing data into a NativeArray.
/// </summary>
/// <typeparam name="T">The type of the elements.</typeparam>
/// <param name="dataPointer">Pointer to the data to be converted.</param>
/// <param name="length">The count of elements.</param>
/// <param name="allocator">The Allocator to use.</param>
/// <param name="setTempMemoryHandle">Use temporary memory atomic safety handle.</param>
/// <returns>Returns the NativeArray that was created.</returns>
/// <remarks>The caller is still the owner of the data.</remarks>
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int) })]
public static unsafe NativeArray<T> ConvertExistingDataToNativeArray<T>(void* dataPointer, int length, AllocatorManager.AllocatorHandle allocator, bool setTempMemoryHandle = false)
where T : unmanaged
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS || UNITY_DOTS_DEBUG
CheckConvertArguments<T>(length);
#endif
NativeArray<T> nativeArray = default;
nativeArray.m_Buffer = dataPointer;
nativeArray.m_Length = length;
if (!allocator.IsCustomAllocator)
{
nativeArray.m_AllocatorLabel = allocator.ToAllocator;
}
else
{
nativeArray.m_AllocatorLabel = Allocator.None;
}
#if ENABLE_UNITY_COLLECTIONS_CHECKS
nativeArray.m_MinIndex = 0;
nativeArray.m_MaxIndex = length - 1;
if (setTempMemoryHandle)
{
NativeArrayUnsafeUtility.SetAtomicSafetyHandle(ref nativeArray, AtomicSafetyHandle.GetTempMemoryHandle());
}
#endif
return nativeArray;
}
/// <summary>
/// Convert NativeList into a NativeArray.
/// </summary>
/// <typeparam name="T">The type of the elements.</typeparam>
/// <param name="nativeList">NativeList to be converted.</param>
/// <param name="length">The count of elements.</param>
/// <param name="allocator">The Allocator to use.</param>
/// <returns>Returns the NativeArray that was created.</returns>
/// <remarks>There is a caveat if users would like to transfer memory ownership from the NativeList to the converted NativeArray.
/// NativeList implementation includes two memory allocations, one holds its header, another holds the list data.
/// After convertion, the converted NativeArray holds the list data and dispose the array only free the list data.
/// Users need to manually free the list header to avoid memory leaks, for example after convertion call,
/// AllocatorManager.Free(allocator, nativeList.m_ListData); </remarks>
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int) })]
public static unsafe NativeArray<T> ConvertExistingNativeListToNativeArray<T>(ref NativeList<T> nativeList, int length, AllocatorManager.AllocatorHandle allocator)
where T : unmanaged
{
NativeArray<T> nativeArray = ConvertExistingDataToNativeArray<T>(nativeList.GetUnsafePtr(), length, allocator);
#if ENABLE_UNITY_COLLECTIONS_CHECKS
var safetyHandle = NativeListUnsafeUtility.GetAtomicSafetyHandle(ref nativeList);
NativeArrayUnsafeUtility.SetAtomicSafetyHandle<T>(ref nativeArray, safetyHandle);
InitNestedNativeContainer<T>(nativeArray.m_Safety);
#endif
return nativeArray;
}
#if ENABLE_UNITY_COLLECTIONS_CHECKS
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int) }, RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS", CompileTarget = GenerateTestsForBurstCompatibilityAttribute.BurstCompatibleCompileTarget.Editor)]
internal static AtomicSafetyHandle GetNativeArraySafetyHandle<T>(ref NativeArray<T> nativeArray)
where T : unmanaged
{
return nativeArray.m_Safety;
}
#endif
/// <summary>
/// Create a NativeParallelMultiHashMap from a managed array, using a provided Allocator.
/// </summary>
/// <typeparam name="TKey">The type of the keys.</typeparam>
/// <typeparam name="TValue">The type of the values.</typeparam>
/// <typeparam name="U">The type of allocator.</typeparam>
/// <param name="length">The desired capacity of the NativeParallelMultiHashMap.</param>
/// <param name="allocator">The Allocator to use.</param>
/// <returns>Returns the NativeParallelMultiHashMap that was created.</returns>
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int), typeof(int), typeof(AllocatorManager.AllocatorHandle) })]
public static NativeParallelMultiHashMap<TKey, TValue> CreateNativeParallelMultiHashMap<TKey, TValue, U>(int length, ref U allocator)
where TKey : unmanaged, IEquatable<TKey>
where TValue : unmanaged
where U : unmanaged, AllocatorManager.IAllocator
{
var container = new NativeParallelMultiHashMap<TKey, TValue>();
container.Initialize(length, ref allocator);
return container;
}
/// <summary>
/// Empty job type used for Burst compilation testing
/// </summary>
[BurstCompile]
public struct DummyJob : IJob
{
/// <summary>
/// Empty job execute function used for Burst compilation testing
/// </summary>
public void Execute()
{
}
}
/// <summary>
/// Checks that reflection data was properly registered for a job.
/// </summary>
/// <remarks>This should be called before instantiating JobsUtility.JobScheduleParameters in order to report to the user if they need to take action.</remarks>
/// <param name="reflectionData">The reflection data pointer.</param>
/// <typeparam name="T">Job type</typeparam>
[GenerateTestsForBurstCompatibility(RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS",
GenericTypeArguments = new[] { typeof(DummyJob) })]
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
public static void CheckReflectionDataCorrect<T>(IntPtr reflectionData)
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS || UNITY_DOTS_DEBUG
bool burstCompiled = true;
CheckReflectionDataCorrectInternal<T>(reflectionData, ref burstCompiled);
if (burstCompiled && reflectionData == IntPtr.Zero)
throw new InvalidOperationException("Reflection data was not set up by an Initialize() call. For generic job types, please include [assembly: RegisterGenericJobType(typeof(MyJob<MyJobSpecialization>))] in your source file.");
#endif
}
#if ENABLE_UNITY_COLLECTIONS_CHECKS
/// <summary>
/// Creates a new AtomicSafetyHandle that is valid until [[CollectionHelper.DisposeSafetyHandle]] is called.
/// </summary>
/// <param name="allocator">The AllocatorHandle to use.</param>
/// <returns>Safety handle.</returns>
[GenerateTestsForBurstCompatibility(RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS")]
public static AtomicSafetyHandle CreateSafetyHandle(AllocatorManager.AllocatorHandle allocator)
{
if (allocator.IsCustomAllocator)
{
return AtomicSafetyHandle.Create();
}
return (allocator.ToAllocator == Allocator.Temp) ? AtomicSafetyHandle.GetTempMemoryHandle() : AtomicSafetyHandle.Create();
}
/// <summary>
/// Disposes a previously created AtomicSafetyHandle.
/// </summary>
/// <param name="handle">Safety handle.</param>
[GenerateTestsForBurstCompatibility(RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS")]
public static void DisposeSafetyHandle(ref AtomicSafetyHandle handle)
{
AtomicSafetyHandle.CheckDeallocateAndThrow(handle);
// If the safety handle is for a temp allocation, create a new safety handle for this instance which can be marked as invalid
// Setting it to new AtomicSafetyHandle is not enough since the handle needs a valid node pointer in order to give the correct errors
if (AtomicSafetyHandle.IsTempMemoryHandle(handle))
{
int staticSafetyId = handle.staticSafetyId;
handle = AtomicSafetyHandle.Create();
handle.staticSafetyId = staticSafetyId;
}
AtomicSafetyHandle.Release(handle);
}
static unsafe void CreateStaticSafetyIdInternal(ref int id, in FixedString512Bytes name)
{
id = AtomicSafetyHandle.NewStaticSafetyId(name.GetUnsafePtr(), name.Length);
}
[BurstDiscard]
static void CreateStaticSafetyIdInternal<T>(ref int id)
{
CreateStaticSafetyIdInternal(ref id, typeof(T).ToString());
}
/// <summary>
/// Assigns the provided static safety ID to an [[AtomicSafetyHandle]]. The ID's owner type name and any custom error messages are used by the job debugger when reporting errors involving the target handle.
/// </summary>
/// <remarks>This is preferable to AtomicSafetyHandle.NewStaticSafetyId as it is compatible with burst.</remarks>
/// <typeparam name="T">Type of container safety handle refers to.</typeparam>
/// <param name="handle">Safety handle.</param>
/// <param name="sharedStaticId">The static safety ID to associate with the provided handle. This ID must have been allocated with ::ref::NewStaticSafetyId.</param>
[GenerateTestsForBurstCompatibility(RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS", GenericTypeArguments = new[] { typeof(NativeArray<int>) })]
public static void SetStaticSafetyId<T>(ref AtomicSafetyHandle handle, ref int sharedStaticId)
{
if (sharedStaticId == 0)
{
// This will eventually either work with burst supporting a subset of typeof()
// or something similar to Burst.BurstRuntime.GetTypeName() will be implemented
// JIRA issue DOTS-5685
CreateStaticSafetyIdInternal<T>(ref sharedStaticId);
}
AtomicSafetyHandle.SetStaticSafetyId(ref handle, sharedStaticId);
}
/// <summary>
/// Assigns the provided static safety ID to an [[AtomicSafetyHandle]]. The ID's owner type name and any custom error messages are used by the job debugger when reporting errors involving the target handle.
/// </summary>
/// <remarks>This is preferable to AtomicSafetyHandle.NewStaticSafetyId as it is compatible with burst.</remarks>
/// <param name="handle">Safety handle.</param>
/// <param name="sharedStaticId">The static safety ID to associate with the provided handle. This ID must have been allocated with ::ref::NewStaticSafetyId.</param>
/// <param name="name">The name of the resource type.</param>
[GenerateTestsForBurstCompatibility(RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS")]
public static unsafe void SetStaticSafetyId(ref AtomicSafetyHandle handle, ref int sharedStaticId, FixedString512Bytes name)
{
if (sharedStaticId == 0)
{
CreateStaticSafetyIdInternal(ref sharedStaticId, name);
}
AtomicSafetyHandle.SetStaticSafetyId(ref handle, sharedStaticId);
}
#endif
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
[BurstDiscard]
static void CheckReflectionDataCorrectInternal<T>(IntPtr reflectionData, ref bool burstCompiled)
{
if (reflectionData == IntPtr.Zero)
throw new InvalidOperationException($"Reflection data was not set up by an Initialize() call. For generic job types, please include [assembly: RegisterGenericJobType(typeof({typeof(T)}))] in your source file.");
burstCompiled = false;
}
}
}