968 lines
54 KiB
C#
968 lines
54 KiB
C#
|
using System;
|
|||
|
using Unity.Burst;
|
|||
|
using Unity.Collections;
|
|||
|
using Unity.Jobs;
|
|||
|
using Unity.Mathematics;
|
|||
|
|
|||
|
namespace UnityEngine.Rendering.Universal
|
|||
|
{
|
|||
|
[BurstCompile(FloatMode = FloatMode.Default, DisableSafetyChecks = true, OptimizeFor = OptimizeFor.Performance)]
|
|||
|
struct TilingJob : IJobFor
|
|||
|
{
|
|||
|
[ReadOnly]
|
|||
|
public NativeArray<VisibleLight> lights;
|
|||
|
|
|||
|
[ReadOnly]
|
|||
|
public NativeArray<VisibleReflectionProbe> reflectionProbes;
|
|||
|
|
|||
|
[NativeDisableParallelForRestriction]
|
|||
|
public NativeArray<InclusiveRange> tileRanges;
|
|||
|
|
|||
|
public int itemsPerTile;
|
|||
|
public int rangesPerItem;
|
|||
|
|
|||
|
public Fixed2<float4x4> worldToViews;
|
|||
|
|
|||
|
public float2 tileScale;
|
|||
|
public float2 tileScaleInv;
|
|||
|
public Fixed2<float> viewPlaneBottoms;
|
|||
|
public Fixed2<float> viewPlaneTops;
|
|||
|
public Fixed2<float4> viewToViewportScaleBiases;
|
|||
|
public int2 tileCount;
|
|||
|
public float near;
|
|||
|
public bool isOrthographic;
|
|||
|
|
|||
|
InclusiveRange m_TileYRange;
|
|||
|
int m_Offset;
|
|||
|
int m_ViewIndex;
|
|||
|
float2 m_CenterOffset;
|
|||
|
|
|||
|
public void Execute(int jobIndex)
|
|||
|
{
|
|||
|
var index = jobIndex % itemsPerTile;
|
|||
|
m_ViewIndex = jobIndex / itemsPerTile;
|
|||
|
m_Offset = jobIndex * rangesPerItem;
|
|||
|
|
|||
|
m_TileYRange = new InclusiveRange(short.MaxValue, short.MinValue);
|
|||
|
|
|||
|
for (var i = 0; i < rangesPerItem; i++)
|
|||
|
{
|
|||
|
tileRanges[m_Offset + i] = new InclusiveRange(short.MaxValue, short.MinValue);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
if (index < lights.Length)
|
|||
|
{
|
|||
|
if (isOrthographic) { TileLightOrthographic(index); }
|
|||
|
else { TileLight(index); }
|
|||
|
}
|
|||
|
else { TileReflectionProbe(index); }
|
|||
|
}
|
|||
|
|
|||
|
void TileLight(int lightIndex)
|
|||
|
{
|
|||
|
var light = lights[lightIndex];
|
|||
|
if (light.lightType != LightType.Point && light.lightType != LightType.Spot)
|
|||
|
{
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
var lightToWorld = (float4x4)light.localToWorldMatrix;
|
|||
|
var lightPositionVS = math.mul(worldToViews[m_ViewIndex], math.float4(lightToWorld.c3.xyz, 1)).xyz;
|
|||
|
lightPositionVS.z *= -1;
|
|||
|
if (lightPositionVS.z >= near) ExpandY(lightPositionVS);
|
|||
|
var lightDirectionVS = math.normalize(math.mul(worldToViews[m_ViewIndex], math.float4(lightToWorld.c2.xyz, 0)).xyz);
|
|||
|
lightDirectionVS.z *= -1;
|
|||
|
|
|||
|
var halfAngle = math.radians(light.spotAngle * 0.5f);
|
|||
|
var range = light.range;
|
|||
|
var rangesq = square(range);
|
|||
|
var cosHalfAngle = math.cos(halfAngle);
|
|||
|
var coneHeight = cosHalfAngle * range;
|
|||
|
|
|||
|
// Radius of circle formed by intersection of sphere and near plane.
|
|||
|
// Found using Pythagoras with a right triangle formed by three points:
|
|||
|
// (a) light position
|
|||
|
// (b) light position projected to near plane
|
|||
|
// (c) a point on the near plane at a distance `range` from the light position
|
|||
|
// (i.e. lies both on the sphere and the near plane)
|
|||
|
// Thus the hypotenuse is formed by (a) and (c) with length `range`, and the known side is formed
|
|||
|
// by (a) and (b) with length equal to the distance between the near plane and the light position.
|
|||
|
// The remaining unknown side is formed by (b) and (c) with length equal to the radius of the circle.
|
|||
|
// m_ClipCircleRadius = sqrt(sq(light.range) - sq(m_Near - m_LightPosition.z));
|
|||
|
var sphereClipRadius = math.sqrt(rangesq - square(near - lightPositionVS.z));
|
|||
|
|
|||
|
// Assumes a point on the sphere, i.e. at distance `range` from the light position.
|
|||
|
// If spot light, we check the angle between the direction vector from the light position and the light direction vector.
|
|||
|
// Note that division by range is to normalize the vector, as we know that the resulting vector will have length `range`.
|
|||
|
bool SpherePointIsValid(float3 p) => light.lightType == LightType.Point ||
|
|||
|
math.dot(math.normalize(p - lightPositionVS), lightDirectionVS) >= cosHalfAngle;
|
|||
|
|
|||
|
// Project light sphere onto YZ plane, find the horizon points, and re-construct view space position of found points.
|
|||
|
// CalculateSphereYBounds(lightPositionVS, range, near, sphereClipRadius, out var sphereBoundY0, out var sphereBoundY1);
|
|||
|
GetSphereHorizon(lightPositionVS.yz, range, near, sphereClipRadius, out var sphereBoundYZ0, out var sphereBoundYZ1);
|
|||
|
var sphereBoundY0 = math.float3(lightPositionVS.x, sphereBoundYZ0);
|
|||
|
var sphereBoundY1 = math.float3(lightPositionVS.x, sphereBoundYZ1);
|
|||
|
if (SpherePointIsValid(sphereBoundY0)) ExpandY(sphereBoundY0);
|
|||
|
if (SpherePointIsValid(sphereBoundY1)) ExpandY(sphereBoundY1);
|
|||
|
|
|||
|
// Project light sphere onto XZ plane, find the horizon points, and re-construct view space position of found points.
|
|||
|
GetSphereHorizon(lightPositionVS.xz, range, near, sphereClipRadius, out var sphereBoundXZ0, out var sphereBoundXZ1);
|
|||
|
var sphereBoundX0 = math.float3(sphereBoundXZ0.x, lightPositionVS.y, sphereBoundXZ0.y);
|
|||
|
var sphereBoundX1 = math.float3(sphereBoundXZ1.x, lightPositionVS.y, sphereBoundXZ1.y);
|
|||
|
if (SpherePointIsValid(sphereBoundX0)) ExpandY(sphereBoundX0);
|
|||
|
if (SpherePointIsValid(sphereBoundX1)) ExpandY(sphereBoundX1);
|
|||
|
|
|||
|
if (light.lightType == LightType.Spot)
|
|||
|
{
|
|||
|
// Cone base
|
|||
|
var baseRadius = math.sqrt(range * range - coneHeight * coneHeight);
|
|||
|
var baseCenter = lightPositionVS + lightDirectionVS * coneHeight;
|
|||
|
|
|||
|
// Project cone base (a circle) into the YZ plane, find the horizon points, and re-construct view space position of found points.
|
|||
|
// When projecting a circle to a plane, it becomes an ellipse where the major axis is parallel to the line
|
|||
|
// of intersection of the projection plane and the circle plane. We can get this by taking the cross product
|
|||
|
// of the two plane normals, as the line of intersection will have to be a vector in both planes, and thus
|
|||
|
// orthogonal to both normals.
|
|||
|
// If the two plane normals are parallel, the cross product would return 0. In that case, the circle will
|
|||
|
// project to a line segment, so we pick a vector in the plane pointing in the direction we're interested
|
|||
|
// in finding horizon points in.
|
|||
|
var baseUY = math.abs(math.abs(lightDirectionVS.x) - 1) < 1e-6f ? math.float3(0, 1, 0) : math.normalize(math.cross(lightDirectionVS, math.float3(1, 0, 0)));
|
|||
|
var baseVY = math.cross(lightDirectionVS, baseUY);
|
|||
|
GetProjectedCircleHorizon(baseCenter.yz, baseRadius, baseUY.yz, baseVY.yz, out var baseY1UV, out var baseY2UV);
|
|||
|
var baseY1 = baseCenter + baseY1UV.x * baseUY + baseY1UV.y * baseVY;
|
|||
|
var baseY2 = baseCenter + baseY2UV.x * baseUY + baseY2UV.y * baseVY;
|
|||
|
if (baseY1.z >= near) ExpandY(baseY1);
|
|||
|
if (baseY2.z >= near) ExpandY(baseY2);
|
|||
|
|
|||
|
// Project cone base into the XZ plane, find the horizon points, and re-construct view space position of found points.
|
|||
|
// See comment for YZ plane for details.
|
|||
|
var baseUX = math.abs(math.abs(lightDirectionVS.y) - 1) < 1e-6f ? math.float3(1, 0, 0) : math.normalize(math.cross(lightDirectionVS, math.float3(0, 1, 0)));
|
|||
|
var baseVX = math.cross(lightDirectionVS, baseUX);
|
|||
|
GetProjectedCircleHorizon(baseCenter.xz, baseRadius, baseUX.xz, baseVX.xz, out var baseX1UV, out var baseX2UV);
|
|||
|
var baseX1 = baseCenter + baseX1UV.x * baseUX + baseX1UV.y * baseVX;
|
|||
|
var baseX2 = baseCenter + baseX2UV.x * baseUX + baseX2UV.y * baseVX;
|
|||
|
if (baseX1.z >= near) ExpandY(baseX1);
|
|||
|
if (baseX2.z >= near) ExpandY(baseX2);
|
|||
|
|
|||
|
// Handle base circle clipping by intersecting it with the near-plane if needed.
|
|||
|
if (GetCircleClipPoints(baseCenter, lightDirectionVS, baseRadius, near, out var baseClip0, out var baseClip1))
|
|||
|
{
|
|||
|
ExpandY(baseClip0);
|
|||
|
ExpandY(baseClip1);
|
|||
|
}
|
|||
|
|
|||
|
bool ConicPointIsValid(float3 p) =>
|
|||
|
math.dot(math.normalize(p - lightPositionVS), lightDirectionVS) >= 0 &&
|
|||
|
math.dot(p - lightPositionVS, lightDirectionVS) <= coneHeight;
|
|||
|
|
|||
|
// Calculate Z bounds of cone and check if it's overlapping with the near plane.
|
|||
|
// From https://www.iquilezles.org/www/articles/diskbbox/diskbbox.htm
|
|||
|
var baseExtentZ = baseRadius * math.sqrt(1.0f - square(lightDirectionVS.z));
|
|||
|
var coneIsClipping = near >= math.min(baseCenter.z - baseExtentZ, lightPositionVS.z) && near <= math.max(baseCenter.z + baseExtentZ, lightPositionVS.z);
|
|||
|
|
|||
|
var coneU = math.cross(lightDirectionVS, lightPositionVS);
|
|||
|
// The cross product will be the 0-vector if the light-direction and camera-to-light-position vectors are parallel.
|
|||
|
// In that case, {1, 0, 0} is orthogonal to the light direction and we use that instead.
|
|||
|
coneU = math.csum(coneU) != 0f ? math.normalize(coneU) : math.float3(1, 0, 0);
|
|||
|
var coneV = math.cross(lightDirectionVS, coneU);
|
|||
|
|
|||
|
if (coneIsClipping)
|
|||
|
{
|
|||
|
var r = baseRadius / coneHeight;
|
|||
|
|
|||
|
// Find the Y bounds of the near-plane cone intersection, i.e. where y' = 0
|
|||
|
var thetaY = FindNearConicTangentTheta(lightPositionVS.yz, lightDirectionVS.yz, r, coneU.yz, coneV.yz);
|
|||
|
var p0Y = EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, thetaY.x);
|
|||
|
var p1Y = EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, thetaY.y);
|
|||
|
if (ConicPointIsValid(p0Y)) ExpandY(p0Y);
|
|||
|
if (ConicPointIsValid(p1Y)) ExpandY(p1Y);
|
|||
|
|
|||
|
// Find the X bounds of the near-plane cone intersection, i.e. where x' = 0
|
|||
|
var thetaX = FindNearConicTangentTheta(lightPositionVS.xz, lightDirectionVS.xz, r, coneU.xz, coneV.xz);
|
|||
|
var p0X = EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, thetaX.x);
|
|||
|
var p1X = EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, thetaX.y);
|
|||
|
if (ConicPointIsValid(p0X)) ExpandY(p0X);
|
|||
|
if (ConicPointIsValid(p1X)) ExpandY(p1X);
|
|||
|
}
|
|||
|
|
|||
|
// Calculate the lines making up the sides of the cone as seen from the camera. `l1` and `l2` form lines
|
|||
|
// from the light position.
|
|||
|
GetConeSideTangentPoints(lightPositionVS, lightDirectionVS, cosHalfAngle, baseRadius, coneHeight, range, coneU, coneV, out var l1, out var l2);
|
|||
|
|
|||
|
{
|
|||
|
var planeNormal = math.float3(0, 1, viewPlaneBottoms[m_ViewIndex]);
|
|||
|
var l1t = math.dot(-lightPositionVS, planeNormal) / math.dot(l1, planeNormal);
|
|||
|
var l1x = lightPositionVS + l1 * l1t;
|
|||
|
if (l1t >= 0 && l1t <= 1 && l1x.z >= near) ExpandY(l1x);
|
|||
|
}
|
|||
|
{
|
|||
|
var planeNormal = math.float3(0, 1, viewPlaneTops[m_ViewIndex]);
|
|||
|
var l1t = math.dot(-lightPositionVS, planeNormal) / math.dot(l1, planeNormal);
|
|||
|
var l1x = lightPositionVS + l1 * l1t;
|
|||
|
if (l1t >= 0 && l1t <= 1 && l1x.z >= near) ExpandY(l1x);
|
|||
|
}
|
|||
|
|
|||
|
m_TileYRange.Clamp(0, (short)(tileCount.y - 1));
|
|||
|
|
|||
|
// Calculate tile plane ranges for cone.
|
|||
|
for (var planeIndex = m_TileYRange.start + 1; planeIndex <= m_TileYRange.end; planeIndex++)
|
|||
|
{
|
|||
|
var planeRange = InclusiveRange.empty;
|
|||
|
|
|||
|
// Y-position on the view plane (Z=1)
|
|||
|
var planeY = math.lerp(viewPlaneBottoms[m_ViewIndex], viewPlaneTops[m_ViewIndex], planeIndex * tileScaleInv.y);
|
|||
|
|
|||
|
var planeNormal = math.float3(0, 1, -planeY);
|
|||
|
|
|||
|
// Intersect lines with y-plane and clip if needed.
|
|||
|
var l1t = math.dot(-lightPositionVS, planeNormal) / math.dot(l1, planeNormal);
|
|||
|
var l1x = lightPositionVS + l1 * l1t;
|
|||
|
if (l1t >= 0 && l1t <= 1 && l1x.z >= near) planeRange.Expand((short)ViewToTileSpace(l1x).x);
|
|||
|
|
|||
|
var l2t = math.dot(-lightPositionVS, planeNormal) / math.dot(l2, planeNormal);
|
|||
|
var l2x = lightPositionVS + l2 * l2t;
|
|||
|
if (l2t >= 0 && l2t <= 1 && l2x.z >= near) planeRange.Expand((short)ViewToTileSpace(l2x).x);
|
|||
|
|
|||
|
if (IntersectCircleYPlane(planeY, baseCenter, lightDirectionVS, baseUY, baseVY, baseRadius, out var circleTile0, out var circleTile1))
|
|||
|
{
|
|||
|
if (circleTile0.z >= near) planeRange.Expand((short)ViewToTileSpace(circleTile0).x);
|
|||
|
if (circleTile1.z >= near) planeRange.Expand((short)ViewToTileSpace(circleTile1).x);
|
|||
|
}
|
|||
|
|
|||
|
if (coneIsClipping)
|
|||
|
{
|
|||
|
var y = planeY * near;
|
|||
|
var r = baseRadius / coneHeight;
|
|||
|
var theta = FindNearConicYTheta(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, y);
|
|||
|
var p0 = math.float3(EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, theta.x).x, y, near);
|
|||
|
var p1 = math.float3(EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, theta.y).x, y, near);
|
|||
|
if (ConicPointIsValid(p0)) planeRange.Expand((short)ViewToTileSpace(p0).x);
|
|||
|
if (ConicPointIsValid(p1)) planeRange.Expand((short)ViewToTileSpace(p1).x);
|
|||
|
}
|
|||
|
|
|||
|
// Only consider ranges that intersect the tiling extents.
|
|||
|
// The logic in the below 'if' statement is a simplification of:
|
|||
|
// !((planeRange.start < 0) && (planeRange.end < 0)) && !((planeRange.start > tileCount.x - 1) && (planeRange.end > tileCount.x - 1))
|
|||
|
if (((planeRange.start >= 0) || (planeRange.end >= 0)) && ((planeRange.start <= tileCount.x - 1) || (planeRange.end <= tileCount.x - 1)))
|
|||
|
{
|
|||
|
// Write to tile ranges above and below the plane. Note that at `m_Offset` we store Y-range.
|
|||
|
var tileIndex = m_Offset + 1 + planeIndex;
|
|||
|
planeRange.Clamp(0, (short)(tileCount.x - 1));
|
|||
|
tileRanges[tileIndex] = InclusiveRange.Merge(tileRanges[tileIndex], planeRange);
|
|||
|
tileRanges[tileIndex - 1] = InclusiveRange.Merge(tileRanges[tileIndex - 1], planeRange);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
m_TileYRange.Clamp(0, (short)(tileCount.y - 1));
|
|||
|
|
|||
|
// Calculate tile plane ranges for sphere.
|
|||
|
for (var planeIndex = m_TileYRange.start + 1; planeIndex <= m_TileYRange.end; planeIndex++)
|
|||
|
{
|
|||
|
var planeRange = InclusiveRange.empty;
|
|||
|
|
|||
|
var planeY = math.lerp(viewPlaneBottoms[m_ViewIndex], viewPlaneTops[m_ViewIndex], planeIndex * tileScaleInv.y);
|
|||
|
GetSphereYPlaneHorizon(lightPositionVS, range, near, sphereClipRadius, planeY, out var sphereTile0, out var sphereTile1);
|
|||
|
if (SpherePointIsValid(sphereTile0)) planeRange.Expand((short)math.clamp(ViewToTileSpace(sphereTile0).x, 0, tileCount.x - 1));
|
|||
|
if (SpherePointIsValid(sphereTile1)) planeRange.Expand((short)math.clamp(ViewToTileSpace(sphereTile1).x, 0, tileCount.x - 1));
|
|||
|
|
|||
|
var tileIndex = m_Offset + 1 + planeIndex;
|
|||
|
tileRanges[tileIndex] = InclusiveRange.Merge(tileRanges[tileIndex], planeRange);
|
|||
|
tileRanges[tileIndex - 1] = InclusiveRange.Merge(tileRanges[tileIndex - 1], planeRange);
|
|||
|
}
|
|||
|
|
|||
|
tileRanges[m_Offset] = m_TileYRange;
|
|||
|
}
|
|||
|
|
|||
|
void TileLightOrthographic(int lightIndex)
|
|||
|
{
|
|||
|
var light = lights[lightIndex];
|
|||
|
var lightToWorld = (float4x4)light.localToWorldMatrix;
|
|||
|
var lightPosVS = math.mul(worldToViews[m_ViewIndex], math.float4(lightToWorld.c3.xyz, 1)).xyz;
|
|||
|
lightPosVS.z *= -1;
|
|||
|
ExpandOrthographic(lightPosVS);
|
|||
|
var lightDirVS = math.mul(worldToViews[m_ViewIndex], math.float4(lightToWorld.c2.xyz, 0)).xyz;
|
|||
|
lightDirVS.z *= -1;
|
|||
|
lightDirVS = math.normalize(lightDirVS);
|
|||
|
|
|||
|
var halfAngle = math.radians(light.spotAngle * 0.5f);
|
|||
|
var range = light.range;
|
|||
|
var rangeSq = square(range);
|
|||
|
var cosHalfAngle = math.cos(halfAngle);
|
|||
|
var coneHeight = cosHalfAngle * range;
|
|||
|
var coneHeightSq = square(coneHeight);
|
|||
|
var coneHeightInv = 1f / coneHeight;
|
|||
|
var coneHeightInvSq = square(coneHeightInv);
|
|||
|
|
|||
|
bool SpherePointIsValid(float3 p) => light.lightType == LightType.Point ||
|
|||
|
math.dot(math.normalize(p - lightPosVS), lightDirVS) >= cosHalfAngle;
|
|||
|
|
|||
|
var sphereBoundY0 = lightPosVS - math.float3(0, range, 0);
|
|||
|
var sphereBoundY1 = lightPosVS + math.float3(0, range, 0);
|
|||
|
var sphereBoundX0 = lightPosVS - math.float3(range, 0, 0);
|
|||
|
var sphereBoundX1 = lightPosVS + math.float3(range, 0, 0);
|
|||
|
|
|||
|
if (SpherePointIsValid(sphereBoundY0)) ExpandOrthographic(sphereBoundY0);
|
|||
|
if (SpherePointIsValid(sphereBoundY1)) ExpandOrthographic(sphereBoundY1);
|
|||
|
if (SpherePointIsValid(sphereBoundX0)) ExpandOrthographic(sphereBoundX0);
|
|||
|
if (SpherePointIsValid(sphereBoundX1)) ExpandOrthographic(sphereBoundX1);
|
|||
|
|
|||
|
var circleCenter = lightPosVS + lightDirVS * coneHeight;
|
|||
|
var circleRadius = math.sqrt(rangeSq - coneHeightSq);
|
|||
|
var circleRadiusSq = square(circleRadius);
|
|||
|
var circleUp = math.normalize(math.float3(0, 1, 0) - lightDirVS * lightDirVS.y);
|
|||
|
var circleRight = math.normalize(math.float3(1, 0, 0) - lightDirVS * lightDirVS.x);
|
|||
|
var circleBoundY0 = circleCenter - circleUp * circleRadius;
|
|||
|
var circleBoundY1 = circleCenter + circleUp * circleRadius;
|
|||
|
|
|||
|
if (light.lightType == LightType.Spot)
|
|||
|
{
|
|||
|
var circleBoundX0 = circleCenter - circleRight * circleRadius;
|
|||
|
var circleBoundX1 = circleCenter + circleRight * circleRadius;
|
|||
|
ExpandOrthographic(circleBoundY0);
|
|||
|
ExpandOrthographic(circleBoundY1);
|
|||
|
ExpandOrthographic(circleBoundX0);
|
|||
|
ExpandOrthographic(circleBoundX1);
|
|||
|
}
|
|||
|
|
|||
|
m_TileYRange.Clamp(0, (short)(tileCount.y - 1));
|
|||
|
|
|||
|
// Find two lines in screen-space for the cone if the light is a spot.
|
|||
|
float coneDir0X = 0, coneDir0YInv = 0, coneDir1X = 0, coneDir1YInv = 0;
|
|||
|
if (light.lightType == LightType.Spot)
|
|||
|
{
|
|||
|
// Distance from light position to and radius of sphere fitted to the end of the cone.
|
|||
|
var sphereDistance = coneHeight + circleRadiusSq * coneHeightInv;
|
|||
|
var sphereRadius = math.sqrt(square(circleRadiusSq) * coneHeightInvSq + circleRadiusSq);
|
|||
|
var directionXYSqInv = math.rcp(math.lengthsq(lightDirVS.xy));
|
|||
|
var polarIntersection = -circleRadiusSq * coneHeightInv * directionXYSqInv * lightDirVS.xy;
|
|||
|
var polarDir = math.sqrt((square(sphereRadius) - math.lengthsq(polarIntersection)) * directionXYSqInv) * math.float2(lightDirVS.y, -lightDirVS.x);
|
|||
|
var conePBase = lightPosVS.xy + sphereDistance * lightDirVS.xy + polarIntersection;
|
|||
|
var coneP0 = conePBase - polarDir;
|
|||
|
var coneP1 = conePBase + polarDir;
|
|||
|
|
|||
|
coneDir0X = coneP0.x - lightPosVS.x;
|
|||
|
coneDir0YInv = math.rcp(coneP0.y - lightPosVS.y);
|
|||
|
coneDir1X = coneP1.x - lightPosVS.x;
|
|||
|
coneDir1YInv = math.rcp(coneP1.y - lightPosVS.y);
|
|||
|
}
|
|||
|
|
|||
|
// Tile plane ranges
|
|||
|
for (var planeIndex = m_TileYRange.start + 1; planeIndex <= m_TileYRange.end; planeIndex++)
|
|||
|
{
|
|||
|
var planeRange = InclusiveRange.empty;
|
|||
|
|
|||
|
// Sphere
|
|||
|
var planeY = math.lerp(viewPlaneBottoms[m_ViewIndex], viewPlaneTops[m_ViewIndex], planeIndex * tileScaleInv.y);
|
|||
|
var sphereX = math.sqrt(rangeSq - square(planeY - lightPosVS.y));
|
|||
|
var sphereX0 = math.float3(lightPosVS.x - sphereX, planeY, lightPosVS.z);
|
|||
|
var sphereX1 = math.float3(lightPosVS.x + sphereX, planeY, lightPosVS.z);
|
|||
|
if (SpherePointIsValid(sphereX0)) { ExpandRangeOrthographic(ref planeRange, sphereX0.x); }
|
|||
|
if (SpherePointIsValid(sphereX1)) { ExpandRangeOrthographic(ref planeRange, sphereX1.x); }
|
|||
|
|
|||
|
if (light.lightType == LightType.Spot)
|
|||
|
{
|
|||
|
// Circle
|
|||
|
if (planeY >= circleBoundY0.y && planeY <= circleBoundY1.y)
|
|||
|
{
|
|||
|
var intersectionDistance = (planeY - circleCenter.y) / circleUp.y;
|
|||
|
var closestPointX = circleCenter.x + intersectionDistance * circleUp.x;
|
|||
|
var intersectionDirX = -lightDirVS.z / math.length(math.float3(-lightDirVS.z, 0, lightDirVS.x));
|
|||
|
var sideDistance = math.sqrt(square(circleRadius) - square(intersectionDistance));
|
|||
|
var circleX0 = closestPointX - sideDistance * intersectionDirX;
|
|||
|
var circleX1 = closestPointX + sideDistance * intersectionDirX;
|
|||
|
ExpandRangeOrthographic(ref planeRange, circleX0);
|
|||
|
ExpandRangeOrthographic(ref planeRange, circleX1);
|
|||
|
}
|
|||
|
|
|||
|
// Cone
|
|||
|
var deltaY = planeY - lightPosVS.y;
|
|||
|
var coneT0 = deltaY * coneDir0YInv;
|
|||
|
var coneT1 = deltaY * coneDir1YInv;
|
|||
|
if (coneT0 >= 0 && coneT0 <= 1) { ExpandRangeOrthographic(ref planeRange, lightPosVS.x + coneT0 * coneDir0X); }
|
|||
|
if (coneT1 >= 0 && coneT1 <= 1) { ExpandRangeOrthographic(ref planeRange, lightPosVS.x + coneT1 * coneDir1X); }
|
|||
|
}
|
|||
|
|
|||
|
var tileIndex = m_Offset + 1 + planeIndex;
|
|||
|
tileRanges[tileIndex] = InclusiveRange.Merge(tileRanges[tileIndex], planeRange);
|
|||
|
tileRanges[tileIndex - 1] = InclusiveRange.Merge(tileRanges[tileIndex - 1], planeRange);
|
|||
|
}
|
|||
|
|
|||
|
tileRanges[m_Offset] = m_TileYRange;
|
|||
|
}
|
|||
|
|
|||
|
static readonly float3[] k_CubePoints =
|
|||
|
{
|
|||
|
new(-1, -1, -1),
|
|||
|
new(-1, -1, +1),
|
|||
|
new(-1, +1, -1),
|
|||
|
new(-1, +1, +1),
|
|||
|
new(+1, -1, -1),
|
|||
|
new(+1, -1, +1),
|
|||
|
new(+1, +1, -1),
|
|||
|
new(+1, +1, +1),
|
|||
|
};
|
|||
|
|
|||
|
// Each item represents 3 lines, with x being the start index and yzw the end indices.
|
|||
|
static readonly int4[] k_CubeLineIndices =
|
|||
|
{
|
|||
|
// (-1, -1, -1) -> {(+1, -1, -1), (-1, +1, -1), (-1, -1, +1)}
|
|||
|
new(0, 4, 2, 1),
|
|||
|
|
|||
|
// (-1, +1, +1) -> {(+1, +1, +1), (-1, -1, +1), (-1, +1, -1)}
|
|||
|
new(3, 7, 1, 2),
|
|||
|
|
|||
|
// (+1, -1, +1) -> {(-1, -1, +1), (+1, +1, +1), (+1, -1, -1)}
|
|||
|
new(5, 1, 7, 4),
|
|||
|
|
|||
|
// (+1, +1, -1) -> {(-1, +1, -1), (+1, -1, -1), (+1, +1, +1)}
|
|||
|
new(6, 2, 4, 7),
|
|||
|
};
|
|||
|
|
|||
|
void TileReflectionProbe(int index)
|
|||
|
{
|
|||
|
// The algorithm used here works by clipping all the lines of the cube against the near-plane, and then
|
|||
|
// projects the resulting points to the view plane. These points are then used to construct a 2D convex
|
|||
|
// hull, which we can iterate linearly to get the lines on screen making up the cube.
|
|||
|
|
|||
|
var reflectionProbe = reflectionProbes[index - lights.Length];
|
|||
|
var centerWS = (float3)reflectionProbe.bounds.center;
|
|||
|
var extentsWS = (float3)reflectionProbe.bounds.extents;
|
|||
|
|
|||
|
// The vertices of the cube in view space.
|
|||
|
var points = new NativeArray<float3>(k_CubePoints.Length, Allocator.Temp);
|
|||
|
// This is initially filled with just the cube vertices that lie in front of the near plane.
|
|||
|
var clippedPoints = new NativeArray<float2>(k_CubePoints.Length + k_CubeLineIndices.Length * 3, Allocator.Temp);
|
|||
|
var clippedPointsCount = 0;
|
|||
|
var leftmostIndex = 0;
|
|||
|
for (var i = 0; i < k_CubePoints.Length; i++)
|
|||
|
{
|
|||
|
var point = math.mul(worldToViews[m_ViewIndex], math.float4(centerWS + extentsWS * k_CubePoints[i], 1)).xyz;
|
|||
|
point.z *= -1;
|
|||
|
points[i] = point;
|
|||
|
if (point.z >= near)
|
|||
|
{
|
|||
|
var clippedPoint = isOrthographic ? point.xy : point.xy/point.z;
|
|||
|
var clippedIndex = clippedPointsCount++;
|
|||
|
clippedPoints[clippedIndex] = clippedPoint;
|
|||
|
if (clippedPoint.x < clippedPoints[leftmostIndex].x) leftmostIndex = clippedIndex;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Clip the cube's line segments with the near plane, and add the new vertices to clippedPoints. Only lines
|
|||
|
// that are clipped will generate new vertices.
|
|||
|
for (var i = 0; i < k_CubeLineIndices.Length; i++)
|
|||
|
{
|
|||
|
var indices = k_CubeLineIndices[i];
|
|||
|
var p0 = points[indices.x];
|
|||
|
for (var j = 0; j < 3; j++)
|
|||
|
{
|
|||
|
var p1 = points[indices[j+1]];
|
|||
|
// The entire line is in front of the near plane.
|
|||
|
if (p0.z < near && p1.z < near) continue;
|
|||
|
// Check whether the line needs clipping.
|
|||
|
if (p0.z < near || p1.z < near)
|
|||
|
{
|
|||
|
var d = (near - p0.z) / (p1.z - p0.z);
|
|||
|
var p = math.lerp(p0, p1, d);
|
|||
|
var clippedPoint = isOrthographic ? p.xy : p.xy/p.z;
|
|||
|
var clippedIndex = clippedPointsCount++;
|
|||
|
clippedPoints[clippedIndex] = clippedPoint;
|
|||
|
if (clippedPoint.x < clippedPoints[leftmostIndex].x) leftmostIndex = clippedIndex;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Construct the convex hull. It is formed by the line loop consisting of the points in the array.
|
|||
|
var hullPoints = new NativeArray<float2>(clippedPointsCount, Allocator.Temp);
|
|||
|
var hullPointsCount = 0;
|
|||
|
|
|||
|
if (clippedPointsCount > 0)
|
|||
|
{
|
|||
|
// Start with the leftmost point, as that is guaranteed to be on the hull.
|
|||
|
var hullPointIndex = leftmostIndex;
|
|||
|
|
|||
|
// Find the remaining hull points until we end up back at the leftmost point.
|
|||
|
do
|
|||
|
{
|
|||
|
var hullPoint = clippedPoints[hullPointIndex];
|
|||
|
ExpandY(math.float3(hullPoint, 1));
|
|||
|
hullPoints[hullPointsCount++] = hullPoint;
|
|||
|
|
|||
|
// Find the endpoint resulting in the leftmost turning line. This line will be a part of the hull.
|
|||
|
var endpointIndex = 0;
|
|||
|
var endpointLine = clippedPoints[endpointIndex] - hullPoint;
|
|||
|
for (var i = 0; i < clippedPointsCount; i++)
|
|||
|
{
|
|||
|
var candidateLine = clippedPoints[i] - hullPoint;
|
|||
|
var det = math.determinant(math.float2x2(endpointLine, candidateLine));
|
|||
|
|
|||
|
// Check if point i lies on the left side of the line to the current endpoint, or if it lies
|
|||
|
// collinear to the current endpoint but farther away.
|
|||
|
if (endpointIndex == hullPointIndex || det > 0 || (det == 0.0f && math.lengthsq(candidateLine) > math.lengthsq(endpointLine)))
|
|||
|
{
|
|||
|
endpointIndex = i;
|
|||
|
endpointLine = candidateLine;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
hullPointIndex = endpointIndex;
|
|||
|
} while (hullPointIndex != leftmostIndex && hullPointsCount < clippedPointsCount);
|
|||
|
|
|||
|
m_TileYRange.Clamp(0, (short)(tileCount.y - 1));
|
|||
|
|
|||
|
// Calculate tile plane ranges for sphere.
|
|||
|
for (var planeIndex = m_TileYRange.start + 1; planeIndex <= m_TileYRange.end; planeIndex++)
|
|||
|
{
|
|||
|
var planeRange = InclusiveRange.empty;
|
|||
|
|
|||
|
var planeY = math.lerp(viewPlaneBottoms[m_ViewIndex], viewPlaneTops[m_ViewIndex], planeIndex * tileScaleInv.y);
|
|||
|
|
|||
|
for (var i = 0; i < hullPointsCount; i++)
|
|||
|
{
|
|||
|
var hp0 = hullPoints[i];
|
|||
|
var hp1 = hullPoints[(i + 1) % hullPointsCount];
|
|||
|
|
|||
|
// planeY = hp0 + t * (hp1 - hp0) => planeY - hp0 = t * (hp1 - hp0) => (planeY - hp0) / (hp1 - hp0) = t
|
|||
|
var t = (planeY - hp0.y) / (hp1.y - hp0.y);
|
|||
|
if (t < 0 || t > 1) continue;
|
|||
|
var x = math.lerp(hp0.x, hp1.x, t);
|
|||
|
|
|||
|
var p = math.float3(x, planeY, 1);
|
|||
|
var pTS = isOrthographic ? ViewToTileSpaceOrthographic(p) : ViewToTileSpace(p);
|
|||
|
planeRange.Expand((short)math.clamp(pTS.x, 0, tileCount.x - 1));
|
|||
|
}
|
|||
|
|
|||
|
var tileIndex = m_Offset + 1 + planeIndex;
|
|||
|
tileRanges[tileIndex] = InclusiveRange.Merge(tileRanges[tileIndex], planeRange);
|
|||
|
tileRanges[tileIndex - 1] = InclusiveRange.Merge(tileRanges[tileIndex - 1], planeRange);
|
|||
|
}
|
|||
|
|
|||
|
tileRanges[m_Offset] = m_TileYRange;
|
|||
|
}
|
|||
|
|
|||
|
hullPoints.Dispose();
|
|||
|
clippedPoints.Dispose();
|
|||
|
points.Dispose();
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Project onto Z=1, scale and offset into [0, tileCount]
|
|||
|
/// </summary>
|
|||
|
float2 ViewToTileSpace(float3 positionVS)
|
|||
|
{
|
|||
|
return (positionVS.xy / positionVS.z * viewToViewportScaleBiases[m_ViewIndex].xy + viewToViewportScaleBiases[m_ViewIndex].zw) * tileScale;
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Project onto Z=1, scale and offset into [0, tileCount]
|
|||
|
/// </summary>
|
|||
|
float2 ViewToTileSpaceOrthographic(float3 positionVS)
|
|||
|
{
|
|||
|
return (positionVS.xy * viewToViewportScaleBiases[m_ViewIndex].xy + viewToViewportScaleBiases[m_ViewIndex].zw) * tileScale;
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Expands the tile Y range and the X range in the row containing the position.
|
|||
|
/// </summary>
|
|||
|
void ExpandY(float3 positionVS)
|
|||
|
{
|
|||
|
// var positionTS = math.clamp(ViewToTileSpace(positionVS), 0, tileCount - 1);
|
|||
|
var positionTS = ViewToTileSpace(positionVS);
|
|||
|
var tileY = (int)positionTS.y;
|
|||
|
var tileX = (int)positionTS.x;
|
|||
|
m_TileYRange.Expand((short)math.clamp(tileY, 0, tileCount.y - 1));
|
|||
|
if (tileY >= 0 && tileY < tileCount.y && tileX >= 0 && tileX < tileCount.x)
|
|||
|
{
|
|||
|
var rowXRange = tileRanges[m_Offset + 1 + tileY];
|
|||
|
rowXRange.Expand((short)tileX);
|
|||
|
tileRanges[m_Offset + 1 + tileY] = rowXRange;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Expands the tile Y range and the X range in the row containing the position.
|
|||
|
/// </summary>
|
|||
|
void ExpandOrthographic(float3 positionVS)
|
|||
|
{
|
|||
|
// var positionTS = math.clamp(ViewToTileSpace(positionVS), 0, tileCount - 1);
|
|||
|
var positionTS = ViewToTileSpaceOrthographic(positionVS);
|
|||
|
var tileY = (int)positionTS.y;
|
|||
|
var tileX = (int)positionTS.x;
|
|||
|
m_TileYRange.Expand((short)math.clamp(tileY, 0, tileCount.y - 1));
|
|||
|
if (tileY >= 0 && tileY < tileCount.y && tileX >= 0 && tileX < tileCount.x)
|
|||
|
{
|
|||
|
var rowXRange = tileRanges[m_Offset + 1 + tileY];
|
|||
|
rowXRange.Expand((short)tileX);
|
|||
|
tileRanges[m_Offset + 1 + tileY] = rowXRange;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
void ExpandRangeOrthographic(ref InclusiveRange range, float xVS)
|
|||
|
{
|
|||
|
range.Expand((short)math.clamp(ViewToTileSpaceOrthographic(xVS).x, 0, tileCount.x - 1));
|
|||
|
}
|
|||
|
|
|||
|
static float square(float x) => x * x;
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Finds the two horizon points seen from (0, 0) of a sphere projected onto either XZ or YZ. Takes clipping into account.
|
|||
|
/// </summary>
|
|||
|
static void GetSphereHorizon(float2 center, float radius, float near, float clipRadius, out float2 p0, out float2 p1)
|
|||
|
{
|
|||
|
var direction = math.normalize(center);
|
|||
|
|
|||
|
// Distance from camera to center of sphere
|
|||
|
var d = math.length(center);
|
|||
|
|
|||
|
// Distance from camera to sphere horizon edge
|
|||
|
var l = math.sqrt(d * d - radius * radius);
|
|||
|
|
|||
|
// Height of circle horizon
|
|||
|
var h = l * radius / d;
|
|||
|
|
|||
|
// Center of circle horizon
|
|||
|
var c = direction * (l * h / radius);
|
|||
|
|
|||
|
p0 = math.float2(float.MinValue, 1f);
|
|||
|
p1 = math.float2(float.MaxValue, 1f);
|
|||
|
|
|||
|
// Handle clipping
|
|||
|
if (center.y - radius < near)
|
|||
|
{
|
|||
|
p0 = math.float2(center.x + clipRadius, near);
|
|||
|
p1 = math.float2(center.x - clipRadius, near);
|
|||
|
}
|
|||
|
|
|||
|
// Circle horizon points
|
|||
|
var c0 = c + math.float2(-direction.y, direction.x) * h;
|
|||
|
if (square(d) >= square(radius) && c0.y >= near)
|
|||
|
{
|
|||
|
if (c0.x > p0.x) { p0 = c0; }
|
|||
|
if (c0.x < p1.x) { p1 = c0; }
|
|||
|
}
|
|||
|
|
|||
|
var c1 = c + math.float2(direction.y, -direction.x) * h;
|
|||
|
if (square(d) >= square(radius) && c1.y >= near)
|
|||
|
{
|
|||
|
if (c1.x > p0.x) { p0 = c1; }
|
|||
|
if (c1.x < p1.x) { p1 = c1; }
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
static void GetSphereYPlaneHorizon(float3 center, float sphereRadius, float near, float clipRadius, float y, out float3 left, out float3 right)
|
|||
|
{
|
|||
|
// Note: The y-plane is the plane that is determined by `y` in that it contains the vector (1, 0, 0)
|
|||
|
// and goes through the points (0, y, 1) and (0, 0, 0). This would become a straight line in screen-space, and so it
|
|||
|
// represents the boundary between two rows of tiles.
|
|||
|
|
|||
|
// Near-plane clipping - will get overwritten if no clipping is needed.
|
|||
|
// `y` is given for the view plane (Z=1), scale it so that it is on the near plane instead.
|
|||
|
var yNear = y * near;
|
|||
|
// Find the two points of intersection between the clip circle of the sphere and the y-plane.
|
|||
|
// Found using Pythagoras with a right triangle formed by three points:
|
|||
|
// (a) center of the clip circle
|
|||
|
// (b) a point straight above the clip circle center on the y-plane
|
|||
|
// (c) a point that is both on the circle and the y-plane (this is the point we want to find in the end)
|
|||
|
// The hypotenuse is formed by (a) and (c) with length equal to the clip radius. The known side is
|
|||
|
// formed by (a) and (b) and is simply the distance from the center to the y-plane along the y-axis.
|
|||
|
// The remaining side gives us the x-displacement needed to find the intersection points.
|
|||
|
var clipHalfWidth = math.sqrt(square(clipRadius) - square(yNear - center.y));
|
|||
|
left = math.float3(center.x - clipHalfWidth, yNear, near);
|
|||
|
right = math.float3(center.x + clipHalfWidth, yNear, near);
|
|||
|
|
|||
|
// Basis vectors in the y-plane for being able to parameterize the plane.
|
|||
|
var planeU = math.normalize(math.float3(0, y, 1));
|
|||
|
var planeV = math.float3(1, 0, 0);
|
|||
|
|
|||
|
// Calculate the normal of the y-plane. Found from: (0, y, 1) × (1, 0, 0) = (0, 1, -y)
|
|||
|
// This is used to represent the plane along with the origin, which is just 0 and thus doesn't show up
|
|||
|
// in the calculations.
|
|||
|
var normal = math.normalize(math.float3(0, 1, -y));
|
|||
|
|
|||
|
// We want to first find the circle from the intersection of the y-plane and the sphere.
|
|||
|
|
|||
|
// The shortest distance from the sphere center and the y-plane. The sign determines which side of the plane
|
|||
|
// the center is on.
|
|||
|
var signedDistance = math.dot(normal, center);
|
|||
|
|
|||
|
// Unsigned shortest distance from the sphere center to the plane.
|
|||
|
var distanceToPlane = math.abs(signedDistance);
|
|||
|
|
|||
|
// The center of the intersection circle in the y-plane, which is the point on the plane closest to the
|
|||
|
// sphere center. I.e. this is at `distanceToPlane` from the center.
|
|||
|
var centerOnPlane = math.float2(math.dot(center, planeU), math.dot(center, planeV));
|
|||
|
|
|||
|
// Distance from origin to the circle center.
|
|||
|
var distanceInPlane = math.length(centerOnPlane);
|
|||
|
|
|||
|
// Direction from origin to the circle center.
|
|||
|
var directionPS = centerOnPlane / distanceInPlane;
|
|||
|
|
|||
|
// Calculate the radius of the circle using Pythagoras. We know that any point on the circle is a point on
|
|||
|
// the sphere. Thus we can construct a triangle with the sphere center, circle center, and a point on the
|
|||
|
// circle. We then want to find its distance to the circle center, as that will be equal to the radius. As
|
|||
|
// the point is on the sphere, it must be `sphereRadius` from the sphere center, forming the hypotenuse. The
|
|||
|
// other side is between the sphere and circle centers, which we've already calculated to be
|
|||
|
// `distanceToPlane`.
|
|||
|
var circleRadius = math.sqrt(square(sphereRadius) - square(distanceToPlane));
|
|||
|
|
|||
|
// Now that we have the circle, we can find the horizon points. Since we've parametrized the plane, we can
|
|||
|
// just do this in 2D.
|
|||
|
|
|||
|
// Any of these conditions will yield NaN due to negative square roots. They are signs that clipping is needed,
|
|||
|
// so we fallback on the already calculated values in that case.
|
|||
|
if (square(distanceToPlane) <= square(sphereRadius) && square(circleRadius) <= square(distanceInPlane))
|
|||
|
{
|
|||
|
// Distance from origin to circle horizon edge.
|
|||
|
var l = math.sqrt(square(distanceInPlane) - square(circleRadius));
|
|||
|
|
|||
|
// Height of circle horizon.
|
|||
|
var h = l * circleRadius / distanceInPlane;
|
|||
|
|
|||
|
// Center of circle horizon.
|
|||
|
var c = directionPS * (l * h / circleRadius);
|
|||
|
|
|||
|
// Calculate the horizon points in the plane.
|
|||
|
var leftOnPlane = c + math.float2(directionPS.y, -directionPS.x) * h;
|
|||
|
var rightOnPlane = c + math.float2(-directionPS.y, directionPS.x) * h;
|
|||
|
|
|||
|
// Transform horizon points to view space and use if not clipped.
|
|||
|
var leftCandidate = leftOnPlane.x * planeU + leftOnPlane.y * planeV;
|
|||
|
if (leftCandidate.z >= near) left = leftCandidate;
|
|||
|
|
|||
|
var rightCandidate = rightOnPlane.x * planeU + rightOnPlane.y * planeV;
|
|||
|
if (rightCandidate.z >= near) right = rightCandidate;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Finds the two points of intersection of a 3D circle and the near plane.
|
|||
|
/// </summary>
|
|||
|
static bool GetCircleClipPoints(float3 circleCenter, float3 circleNormal, float circleRadius, float near, out float3 p0, out float3 p1)
|
|||
|
{
|
|||
|
// The intersection of two planes is a line where the direction is the cross product of the two plane normals.
|
|||
|
// In this case, it is the plane containing the circle, and the near plane.
|
|||
|
var lineDirection = math.normalize(math.cross(circleNormal, math.float3(0, 0, 1)));
|
|||
|
|
|||
|
// Find a direction on the circle plane towards the nearest point on the intersection line.
|
|||
|
// It has to be perpendicular to the circle normal to be in the circle plane. The direction to the closest
|
|||
|
// point on a line is perpendicular to the line direction. Thus this is given by the cross product of the
|
|||
|
// line direction and the circle normal, as this gives us a vector that is perpendicular to both of those.
|
|||
|
var nearestDirection = math.cross(lineDirection, circleNormal);
|
|||
|
|
|||
|
// Distance from circle center to the intersection line along `nearestDirection`.
|
|||
|
// This is done using a ray-plane intersection, where the plane is the near plane.
|
|||
|
// ({0, 0, near} - circleCenter) . {0, 0, 1} / (nearestDirection . {0, 0, 1})
|
|||
|
var distance = (near - circleCenter.z) / nearestDirection.z;
|
|||
|
|
|||
|
// The point on the line nearest to the circle center when traveling only in the circle plane.
|
|||
|
var nearestPoint = circleCenter + nearestDirection * distance;
|
|||
|
|
|||
|
// Any line through a circle makes a chord where the endpoints are the intersections with the circle.
|
|||
|
// The half length of the circle chord can be found by constructing a right triangle from three points:
|
|||
|
// (a) The circle center.
|
|||
|
// (b) The nearest point.
|
|||
|
// (c) A point that is on circle and the intersection line.
|
|||
|
// The hypotenuse is formed by (a) and (c) and will have length `circleRadius` as it is on the circle.
|
|||
|
// The known side if formed by (a) and (b), which we have already calculated the distance of in `distance`.
|
|||
|
// The unknown side formed by (b) and (c) is then found using Pythagoras.
|
|||
|
var chordHalfLength = math.sqrt(square(circleRadius) - square(distance));
|
|||
|
p0 = nearestPoint + lineDirection * chordHalfLength;
|
|||
|
p1 = nearestPoint - lineDirection * chordHalfLength;
|
|||
|
|
|||
|
return math.abs(distance) <= circleRadius;
|
|||
|
}
|
|||
|
|
|||
|
static (float, float) IntersectEllipseLine(float a, float b, float3 line)
|
|||
|
{
|
|||
|
// The line is represented as a homogenous 2D line {u, v, w} such that ux + vy + w = 0.
|
|||
|
// The ellipse is represented by the implicit equation x^2/a^2 + y^2/b^2 = 1.
|
|||
|
// We solve the line equation for y: y = (ux + w) / v
|
|||
|
// We then substitute this into the ellipse equation and expand and re-arrange a bit:
|
|||
|
// x^2/a^2 + ((ux + w) / v)^2/b^2 = 1 =>
|
|||
|
// x^2/a^2 + ((ux + w)^2 / v^2)/b^2 = 1 =>
|
|||
|
// x^2/a^2 + (ux + w)^2/(v^2 b^2) = 1 =>
|
|||
|
// x^2/a^2 + (u^2 x^2 + w^2 + 2 u x w)/(v^2 b^2) = 1 =>
|
|||
|
// x^2/a^2 + x^2 u^2 / (v^2 b^2) + w^2/(v^2 b^2) + x 2 u w / (v^2 b^2) = 1 =>
|
|||
|
// x^2 (1/a^2 + u^2 / (v^2 b^2)) + x 2 u w / (v^2 b^2) + w^2 / (v^2 b^2) - 1 = 0
|
|||
|
// We now have a quadratic equation with:
|
|||
|
// a = 1/a^2 + u^2 / (v^2 b^2)
|
|||
|
// b = 2 u w / (v^2 b^2)
|
|||
|
// c = w^2 / (v^2 b^2) - 1
|
|||
|
var div = math.rcp(square(line.y) * square(b));
|
|||
|
var qa = 1f / square(a) + square(line.x) * div;
|
|||
|
var qb = 2f * line.x * line.z * div;
|
|||
|
var qc = square(line.z) * div - 1f;
|
|||
|
var sqrtD = math.sqrt(qb * qb - 4f * qa * qc);
|
|||
|
var x1 = (-qb + sqrtD) / (2f * qa);
|
|||
|
var x2 = (-qb - sqrtD) / (2f * qa);
|
|||
|
return (x1, x2);
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Calculates the horizon of a circle orthogonally projected to a plane as seen from the origin on the plane.
|
|||
|
/// </summary>
|
|||
|
/// <param name="center">The center of the circle projected onto the plane.</param>
|
|||
|
/// <param name="radius">The radius of the circle.</param>
|
|||
|
/// <param name="U">The major axis of the ellipse formed by the projection of the circle.</param>
|
|||
|
/// <param name="V">The minor axis of the ellipse formed by the projection of the circle.</param>
|
|||
|
/// <param name="uv1">The first horizon point expressed as factors of <paramref name="U"/> and <paramref name="V"/>.</param>
|
|||
|
/// <param name="uv2">The second horizon point expressed as factors of <paramref name="U"/> and <paramref name="V"/>.</param>
|
|||
|
static void GetProjectedCircleHorizon(float2 center, float radius, float2 U, float2 V, out float2 uv1, out float2 uv2)
|
|||
|
{
|
|||
|
// U is assumed to be constructed such that it is never 0, but V can be if the circle projects to a line segment.
|
|||
|
// In that case, the solution can be trivially found using U only.
|
|||
|
var vl = math.length(V);
|
|||
|
if (vl < 1e-6f)
|
|||
|
{
|
|||
|
uv1 = math.float2(radius, 0);
|
|||
|
uv2 = math.float2(-radius, 0);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
var ul = math.length(U);
|
|||
|
var ulinv = math.rcp(ul);
|
|||
|
var vlinv = math.rcp(vl);
|
|||
|
|
|||
|
// Normalize U and V in the plane.
|
|||
|
var u = U * ulinv;
|
|||
|
var v = V * vlinv;
|
|||
|
|
|||
|
// Major and minor axis of the ellipse.
|
|||
|
var a = ul * radius;
|
|||
|
var b = vl * radius;
|
|||
|
|
|||
|
// Project the camera position into a 2D coordinate system with the circle at (0, 0) and
|
|||
|
// the ellipse major and minor axes as the coordinate system axes. This allows us to use the standard
|
|||
|
// form of the ellipse equation, greatly simplifying the calculations.
|
|||
|
var cameraUV = math.float2(math.dot(-center, u), math.dot(-center, v));
|
|||
|
|
|||
|
// Find the polar line of the camera position in the normalized UV coordinate system.
|
|||
|
var polar = math.float3(cameraUV.x / square(a), cameraUV.y / square(b), -1);
|
|||
|
var (t1, t2) = IntersectEllipseLine(a, b, polar);
|
|||
|
|
|||
|
// Find Y by putting polar into line equation and solving. Denormalize by dividing by U and V lengths.
|
|||
|
uv1 = math.float2(t1 * ulinv, (-polar.x / polar.y * t1 - polar.z / polar.y) * vlinv);
|
|||
|
uv2 = math.float2(t2 * ulinv, (-polar.x / polar.y * t2 - polar.z / polar.y) * vlinv);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
static bool IntersectCircleYPlane(
|
|||
|
float y, float3 circleCenter, float3 circleNormal, float3 circleU, float3 circleV, float circleRadius,
|
|||
|
out float3 p1, out float3 p2)
|
|||
|
{
|
|||
|
p1 = p2 = 0;
|
|||
|
|
|||
|
// Intersecting a circle with a plane yields 2 points, or the whole circle if the plane and the plane of the
|
|||
|
// circle are the same, or nothing if the planes are parallel but offset. We're only interested in the first
|
|||
|
// case. Our other tests will catch the other cases.
|
|||
|
|
|||
|
// The two points will be on the line of intersection of the two planes. Thus we first have to find that line.
|
|||
|
|
|||
|
// Shoot 2 rays along the y-plane and intersect the circle plane. We then transform them into the circle
|
|||
|
// plane, so that we can work in 2D.
|
|||
|
var CdotN = math.dot(circleCenter, circleNormal);
|
|||
|
var h1v = math.float3(1, y, 1) * CdotN / math.dot(math.float3(1, y, 1), circleNormal) - circleCenter;
|
|||
|
var h1 = math.float2(math.dot(h1v, circleU), math.dot(h1v, circleV));
|
|||
|
var h2v = math.float3(-1, y, 1) * CdotN / math.dot(math.float3(-1, y, 1), circleNormal) - circleCenter;
|
|||
|
var h2 = math.float2(math.dot(h2v, circleU), math.dot(h2v, circleV));
|
|||
|
|
|||
|
var lineDirection = math.normalize(h2 - h1);
|
|||
|
// We now have the direction of the line, and would like to find the point on it that is closest to the
|
|||
|
// circle center. A line in 2D is similar to a plane in 3D. So we can calculate a normal, which is just a
|
|||
|
// perpendicular/orthogonal direction, and then take the dot product to find the distance. This is similar
|
|||
|
// to when calculating the d-term for a plane in 3D, which is also just calculating the closest distance
|
|||
|
// from the origin to the plane.
|
|||
|
var lineNormal = math.float2(lineDirection.y, -lineDirection.x);
|
|||
|
var distToLine = math.dot(h1, lineNormal);
|
|||
|
// We can then get that point on the line by following our normal with the distance we just calculated.
|
|||
|
var lineCenter = lineNormal * distToLine;
|
|||
|
|
|||
|
// Avoid negative square roots, as this means we've hit one of the cases that we do not care about.
|
|||
|
if (distToLine > circleRadius) return false;
|
|||
|
|
|||
|
// What's left now is to intersect the line with the circle. We can do so with Pythagoras. Our triangle
|
|||
|
// is made up of `lineCenter`, the circle center and one of the intersection points.
|
|||
|
// We know the distance from `lineCenter` to the circle center (`distToLine`), and the distance from
|
|||
|
// the circle center to one of the intersection points must be the circle radius, as it lies on the
|
|||
|
// circle, forming the hypotenuse.
|
|||
|
var l = math.sqrt(circleRadius * circleRadius - distToLine * distToLine);
|
|||
|
|
|||
|
// What we found above is the distance from `lineCenter` to each of the intersection points. So we just
|
|||
|
// scrub along the line in both directions using the found distance, and then transform back into view
|
|||
|
// space.
|
|||
|
var x1 = lineCenter + l * lineDirection;
|
|||
|
var x2 = lineCenter - l * lineDirection;
|
|||
|
p1 = circleCenter + x1.x * circleU + x1.y * circleV;
|
|||
|
p2 = circleCenter + x2.x * circleU + x2.y * circleV;
|
|||
|
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
static void GetConeSideTangentPoints(float3 vertex, float3 axis, float cosHalfAngle, float circleRadius, float coneHeight, float range, float3 circleU, float3 circleV, out float3 l1, out float3 l2)
|
|||
|
{
|
|||
|
l1 = l2 = 0;
|
|||
|
|
|||
|
if (math.dot(math.normalize(-vertex), axis) >= cosHalfAngle)
|
|||
|
{
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
var d = -math.dot(vertex, axis);
|
|||
|
// If d is zero, this leads to a numerical instability in the code later on. This is why we make the value
|
|||
|
// an epsilon if it is zero.
|
|||
|
if (d == 0f) d = 1e-6f;
|
|||
|
var sign = d < 0 ? -1f : 1f;
|
|||
|
// sign *= vertex.z < 0 ? -1f : 1f;
|
|||
|
// `origin` is the center of the circular slice we're about to calculate at distance `d` from the `vertex`.
|
|||
|
var origin = vertex + axis * d;
|
|||
|
// Get the radius of the circular slice of the cone at the `origin`.
|
|||
|
var radius = math.abs(d) * circleRadius / coneHeight;
|
|||
|
// `circleU` and `circleV` are the two vectors perpendicular to the cone's axis. `cameraUV` is thus the
|
|||
|
// position of the camera projected onto the plane of the circular slice. This basically creates a new
|
|||
|
// 2D coordinate space, with (0, 0) located at the center of the circular slice, which why this variable
|
|||
|
// is called `origin`.
|
|||
|
var cameraUV = math.float2(math.dot(circleU, -origin), math.dot(circleV, -origin));
|
|||
|
// Use homogeneous coordinates to find the tangents.
|
|||
|
var polar = math.float3(cameraUV, -square(radius));
|
|||
|
var p1 = math.float2(-1, -polar.x / polar.y * (-1) - polar.z / polar.y);
|
|||
|
var p2 = math.float2(1, -polar.x / polar.y * 1 - polar.z / polar.y);
|
|||
|
var lineDirection = math.normalize(p2 - p1);
|
|||
|
var lineNormal = math.float2(lineDirection.y, -lineDirection.x);
|
|||
|
var distToLine = math.dot(p1, lineNormal);
|
|||
|
var lineCenter = lineNormal * distToLine;
|
|||
|
var l = math.sqrt(radius * radius - distToLine * distToLine);
|
|||
|
var x1UV = lineCenter + l * lineDirection;
|
|||
|
var x2UV = lineCenter - l * lineDirection;
|
|||
|
var dir1 = math.normalize((origin + x1UV.x * circleU + x1UV.y * circleV) - vertex) * sign;
|
|||
|
var dir2 = math.normalize((origin + x2UV.x * circleU + x2UV.y * circleV) - vertex) * sign;
|
|||
|
l1 = dir1 * range;
|
|||
|
l2 = dir2 * range;
|
|||
|
}
|
|||
|
|
|||
|
static float3 EvaluateNearConic(float near, float3 o, float3 d, float r, float3 u, float3 v, float theta)
|
|||
|
{
|
|||
|
var h = (near - o.z) / (d.z + r * u.z * math.cos(theta) + r * v.z * math.sin(theta));
|
|||
|
return math.float3(o.xy + h * (d.xy + r * u.xy * math.cos(theta) + r * v.xy * math.sin(theta)), near);
|
|||
|
}
|
|||
|
|
|||
|
// o, d, u and v are expected to contain {x or y, z}. I.e. pass in x values to find tangents where x' = 0
|
|||
|
// Returns the two theta values as a float2.
|
|||
|
static float2 FindNearConicTangentTheta(float2 o, float2 d, float r, float2 u, float2 v)
|
|||
|
{
|
|||
|
var sqrt = math.sqrt(square(d.x) * square(u.y) + square(d.x) * square(v.y) - 2f * d.x * d.y * u.x * u.y - 2f * d.x * d.y * v.x * v.y + square(d.y) * square(u.x) + square(d.y) * square(v.x) - square(r) * square(u.x) * square(v.y) + 2f * square(r) * u.x * u.y * v.x * v.y - square(r) * square(u.y) * square(v.x));
|
|||
|
var denom = d.x * v.y - d.y * v.x - r * u.x * v.y + r * u.y * v.x;
|
|||
|
return 2 * math.atan((-d.x * u.y + d.y * u.x + math.float2(1, -1) * sqrt) / denom);
|
|||
|
}
|
|||
|
|
|||
|
static float2 FindNearConicYTheta(float near, float3 o, float3 d, float r, float3 u, float3 v, float y)
|
|||
|
{
|
|||
|
var sqrt = math.sqrt(-square(d.y) * square(o.z) + 2 * square(d.y) * o.z * near - square(d.y) * square(near) + 2 * d.y * d.z * o.y * o.z - 2 * d.y * d.z * o.y * near - 2 * d.y * d.z * o.z * y + 2 * d.y * d.z * y * near - square(d.z) * square(o.y) + 2 * square(d.z) * o.y * y - square(d.z) * square(y) + square(o.y) * square(r) * square(u.z) + square(o.y) * square(r) * square(v.z) - 2 * o.y * o.z * square(r) * u.y * u.z - 2 * o.y * o.z * square(r) * v.y * v.z - 2 * o.y * y * square(r) * square(u.z) - 2 * o.y * y * square(r) * square(v.z) + 2 * o.y * square(r) * u.y * u.z * near + 2 * o.y * square(r) * v.y * v.z * near + square(o.z) * square(r) * square(u.y) + square(o.z) * square(r) * square(v.y) + 2 * o.z * y * square(r) * u.y * u.z + 2 * o.z * y * square(r) * v.y * v.z - 2 * o.z * square(r) * square(u.y) * near - 2 * o.z * square(r) * square(v.y) * near + square(y) * square(r) * square(u.z) + square(y) * square(r) * square(v.z) - 2 * y * square(r) * u.y * u.z * near - 2 * y * square(r) * v.y * v.z * near + square(r) * square(u.y) * square(near) + square(r) * square(v.y) * square(near));
|
|||
|
var denom = d.y * o.z - d.y * near - d.z * o.y + d.z * y + o.y * r * u.z - o.z * r * u.y - y * r * u.z + r * u.y * near;
|
|||
|
return 2 * math.atan((r * (o.y * v.z - o.z * v.y - y * v.z + v.y * near) + math.float2(1, -1) * sqrt) / denom);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|